Property-Based Testing

of Sensor Networks

Andreas Loscher, Konstantinos Sagonas, and Thiemo Voigt

Department of Information Technology, Uppsala University, Sweden

Sensor Network Testing is
Important

Integral to Software Development
Sensor networks are pushing into the commercial domain
Failure can affect the whole network

Used in critical domains:
® Health Care

® Process Control

Contribution

® Extension of Property Based Testing (PBT) to Sensor
Networks

® PBT Framework

® (Case Studies:
® XMAC duty-cycling
® Contiki TCP Socket API

Testing an Encoder and a Decoder
of a Protocol Implementation

Functions: encode() and decode()

Does decoding an encoded message yield the original
message?

Test it!

Some test cases

assert(decode(encode("")) ="")

assert(decode(encode("Hello World")) = "Hello World")
'assert(decode(encode("TestTestTest")) = "TestT estTest)

Are those tests good?

® Look at code
® code coverage tools
® Write more tests

® Write more tests

Property-Based Testing

® Methodology for Software Testing

® Examples:
® Quickcheck
® PropEr
® ScalaCheck

® We extend PBT to Sensor Networks

Property-Based Testing

® We specify:
® Generic structure of the input

® General properties for valid system behaviour
® A PBT tool automatically tests these properties
® Generate wide range of input

® Run the system under test with the generated input

® Checkthe system against properties

Example

prop_encode decode() ->
?FORALL(1, 1nput(),
I == protocol :decode(protocol:encode(l))).

® The input 1 is randomly generated
® The test code is run for each input

® The property is checked for each test instance

Eshell V6.3 (abort with ~G)

1> proper:quickcheck(protocol test:prop_encode decode()).

Failed: After 64 test(s).
[45,80,58,119,94,62,118,71,71,119,114,123,75,67,62,84,99,60,
61,86,67]

Shrinking (19 time(s))
[32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32]

false

Testing Sensor Networks

® Distributed Systems
® Network Topologies
® Heterogeneous Hardware
® Functional and Non-Functional Properties

® Energy Consumption

® Timing

Framework

K Properties j [Generators D

Check Output

PBT Tool)

H Generate Input

Simulator

Duty-Cycle of X-MAC

® Setup:
® Random distribution of UDP server and client nodes

® Client nodes sends periotically messages to server nodes

® |Pv6 and RPL

® Test:
® Has X-MAC for any network a duty-cycle > 10%?

Property

prop_duty_cycle_below_threshold() ->

?FORALL(Motes, configuration(),
\

® Generates arandom
configuration of motes

® Motes:
® Position (x,y)
® Moteld
® Type (Server/Client)

Property

prop_duty cycle below_threshold() ->
?FORALL(Motes, configuration(),
begin
setup(),
{running, Handler} = nifty cooja:state(),
Mote IDs = add motes(Handler, Motes),

N

N

® Start and initialize the simulation

Property

prop duty cycle below threshold() ->
?FORALL(Motes, configuration(),
begin
setup(),
{running, Handler} = nifty cooja:state(),
Mote IDs = add motes(Handler, Motes),
SimTime = 120 * 1000,

nifty cooja:simulation_step(Handler, SimTime),
N

e

® Run the simulation

Property

prop duty cycle below threshold() ->
?FORALL(Motes, configuration(),
begin
setup(),
{running, Handler} = nifty cooja:state(),
Mote IDs = add motes(Handler, Motes),
SimTime = 120 * 1000,
nifty cooja:simulation_step(Handler, SimTime),

MaxDutyCycle = max_duty cycle(Handler, Mote IDs),

~

\ ® Calculate the maximum of the
duty-cycle of the motes

Property

prop duty cycle below threshold() ->
?FORALL(Motes, configuration(),
begin
setup(),
{running, Handler} = nifty cooja:state(),
Mote IDs = add motes(Handler, Motes),
SimTime = 120 * 1000,
nifty cooja:simulation_step(Handler, SimTime),

MaxDutyCycle = max_duty cycle(Handler, Mote IDs),
MaxDutyCycle < 0.1

end)-\\\\\
\\\

® Checkif the duty-cycleis
below 10%

Results

1. Counterexample with 15 motes which was shrunk down
to 6 motes

What about ContikiMac?

2. The same test with ContikiMac; no Counterexample
after 1000 tests

Contiki’'s Socket API

® C-API for handling TCP sockets in Contiki

® Non-Blocking (return values over an event handler)

® Test:

® Are the correct events triggered?

Input

® Input:

® |ist of function calls to the socket interface

® A complete random order of the function calls makes not
much sense.

® We use an Finite State Machine to restrict the possible
combinations of calls.

FSM for operations on 2 Sockets

cleanup()

cleanup()

close()

established

kill()

. Reception of an empty message after connect() that
was never sent

. Double “closed” event on socket that was remotely
closed

. Missing “closed” event after a sequence of 14
commands, which was shrunk to 8 commands

Results

create -> listen -> connect ->

cleanup -> create -> listen ->

connect -> close (on socket that
listened)

® Any change in the sequence will make the bug not show

® Hard to find for a human tester

Conclusion

® Property-Based Testing is an effective way to test sensor
networks.

® We provide a framework that can be applied to a wide
variety of sensor network applications.

® Can already be used to find real, hard-to-find bugs in
sensor network applications.

	Property-Based Testing of Sensor Networks
	Sensor Network Testing is Important
	Contribution
	Testing an Encoder and a Decoder of a Protocol Implementation
	Some test cases
	Are those tests good?
	Property-Based Testing
	Property-Based Testing
	Example
	Testing
	Testing Sensor Networks
	Framework
	Duty-Cycle of X-MAC
	Property
	Property
	Property
	Property
	Property
	Results
	Contiki’s Socket API
	Input
	FSM for operations on 2 Sockets
	Results
	Results
	Conclusion

