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Sensor Network Testing is
Important

Integral to Software Development
Sensor networks are pushing into the commercial domain
Failure can affect the whole network

Used in critical domains:
® Health Care

® Process Control




Contribution

® Extension of Property Based Testing (PBT) to Sensor
Networks

® PBT Framework

® (Case Studies:
® XMAC duty-cycling
® Contiki TCP Socket API




Testing an Encoder and a Decoder
of a Protocol Implementation

Functions: encode() and decode()

Does decoding an encoded message yield the original
message?

Test it!




Some test cases

assert(decode(encode("")) ="")

assert(decode(encode("Hello World")) = "Hello World")
'assert(decode(encode("TestTestTest")) = "TestT estTest)




Are those tests good?

® Look at code
® code coverage tools
® Write more tests

® Write more tests




Property-Based Testing

® Methodology for Software Testing

® Examples:
® Quickcheck
® PropEr
® ScalaCheck

® We extend PBT to Sensor Networks




Property-Based Testing

® We specify:
® Generic structure of the input

® General properties for valid system behaviour
® A PBT tool automatically tests these properties
® Generate wide range of input

® Run the system under test with the generated input

® Checkthe system against properties




Example

prop_encode decode() ->
?FORALL(1, 1nput(),
I == protocol :decode(protocol:encode(l))).

® The input 1 is randomly generated
® The test code is run for each input

® The property is checked for each test instance




Eshell V6.3 (abort with ~G)

1> proper:quickcheck(protocol test:prop_encode decode()).

Failed: After 64 test(s).
[45,80,58,119,94,62,118,71,71,119,114,123,75,67,62,84,99,60,
61,86,67]

Shrinking (19 time(s))
[32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32]

false




Testing Sensor Networks

® Distributed Systems
® Network Topologies
® Heterogeneous Hardware
® Functional and Non-Functional Properties

® Energy Consumption

® Timing




Framework
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Duty-Cycle of X-MAC

® Setup:
® Random distribution of UDP server and client nodes

® Client nodes sends periotically messages to server nodes

® |Pv6 and RPL

® Test:
® Has X-MAC for any network a duty-cycle > 10%?




Property

prop_duty_cycle_below_threshold() ->

?FORALL(Motes, configuration(),
\

® Generates arandom
configuration of motes

® Motes:
® Position (x,y)
® Moteld
® Type (Server/Client)




Property

prop_duty cycle below_threshold() ->
?FORALL(Motes, configuration(),
begin
setup(),
{running, Handler} = nifty cooja:state(),
Mote IDs = add motes(Handler, Motes),

N

N

® Start and initialize the simulation




Property

prop duty cycle below threshold() ->
?FORALL(Motes, configuration(),
begin
setup(),
{running, Handler} = nifty cooja:state(),
Mote IDs = add motes(Handler, Motes),
SimTime = 120 * 1000,

nifty cooja:simulation_step(Handler, SimTime),
N

e

® Run the simulation




Property

prop duty cycle below threshold() ->
?FORALL(Motes, configuration(),
begin
setup(),
{running, Handler} = nifty cooja:state(),
Mote IDs = add motes(Handler, Motes),
SimTime = 120 * 1000,
nifty cooja:simulation_step(Handler, SimTime),

MaxDutyCycle = max_duty cycle(Handler, Mote IDs),

~

\ ® Calculate the maximum of the
duty-cycle of the motes




Property

prop duty cycle below threshold() ->
?FORALL(Motes, configuration(),
begin
setup(),
{running, Handler} = nifty cooja:state(),
Mote IDs = add motes(Handler, Motes),
SimTime = 120 * 1000,
nifty cooja:simulation_step(Handler, SimTime),

MaxDutyCycle = max_duty cycle(Handler, Mote IDs),
MaxDutyCycle < 0.1

end)-\\\\\
\\\

® Checkif the duty-cycleis
below 10%




Results

1. Counterexample with 15 motes which was shrunk down
to 6 motes

What about ContikiMac?

2. The same test with ContikiMac; no Counterexample
after 1000 tests




Contiki’'s Socket API

® C-API for handling TCP sockets in Contiki

® Non-Blocking (return values over an event handler)

® Test:

® Are the correct events triggered?




Input

® Input:

® |ist of function calls to the socket interface

® A complete random order of the function calls makes not
much sense.

® We use an Finite State Machine to restrict the possible
combinations of calls.




FSM for operations on 2 Sockets

cleanup()

cleanup()

close()

established

kill()




. Reception of an empty message after connect() that
was never sent

. Double “closed” event on socket that was remotely
closed

. Missing “closed” event after a sequence of 14
commands, which was shrunk to 8 commands




Results

create -> listen -> connect ->

cleanup -> create -> listen ->

connect -> close (on socket that
listened)

® Any change in the sequence will make the bug not show

® Hard to find for a human tester




Conclusion

® Property-Based Testing is an effective way to test sensor
networks.

® We provide a framework that can be applied to a wide
variety of sensor network applications.

® Can already be used to find real, hard-to-find bugs in
sensor network applications.
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