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Abstract—We advocate the use of property-based testing in
the area of sensor networks and present a framework to apply
this testing methodology. Our framework provides an expressive
high-level language to specify a wide range of properties, starting
from properties of individual functions to network-global prop-
erties, and infrastructure to automatically test these properties
in COOJA, the network simulator of the CONTIKI operating
system. We demonstrate the ease of use and effectiveness of our
framework by two case studies. In the first, we test whether the
energy consumption of the radio duty-cycle protocol X-MAC is
within some specific bound. Property-based testing finds minimal
network configurations where a small number of nodes violate
the property. Property-based testing also reveals that the same
property is not violated when ContikiMAC is used instead, but
finds cases where ContikiMAC has higher energy consumption
than X-MAC. In the second case study, we test the C API of
CONTIKI’s TCP socket library and find bugs in its event system
that would be very hard to detect with other methods.

I. INTRODUCTION

Testing is an integral part of modern software development.
It increases the confidence in the correctness of software and
helps in uncovering bugs and avoids repeating them. The needs
of the development process for software of sensor networks
are no different in this regard. In fact, arguably it is even more
crucial to rigorously test these systems as they are rapidly
becoming commercial these days and used in critical domains
such as e.g. process control [1] and e-health [2]. Also, testing
and fixing their software is considerably more difficult and
costly after their deployment. Last but not least, a software
bug triggered during operation might not only affect a single
node, but might bring down the whole network.

Still, it is not uncommon to deploy sensor networks that,
although tested beforehand using traditional testing techniques
such as unit and regression testing, contain serious bugs that
prevent them from operating as expected [3]–[6]. Part of the
reason for this is that often in practice developers create only
a few test scenarios to check their software. Creating multiple
tests is a time-consuming and boring task, since on top of
writing the test case for the application software one must
specify the network topology and find a way to control the
used network simulator or testbed. Thorough testing requires
using a plethora of test cases that cover even unlikely corners.

To improve on the state-of-the-art of testing sensor networks,
in this paper we advocate the use of property-based testing in
their development process and present a framework to apply this
testing methodology. Our framework comes with an expressive
high-level language to specify a wide range of properties,
starting from properties of individual functions to network-
global properties, and infrastructure to automatically test these

properties in COOJA, the network simulator of the CONTIKI
operating system [7]. A component of our framework, which
we developed from scratch, allows us to test the sensor node
software at the level of individual C functions.

We show that our framework is effective and easy to use,
by presenting two case studies that test various aspects of
CONTIKI’s code base. The first of them illustrates testing the
energy efficiency of sensor network protocols in general, and
the implementation of two MAC protocols in particular. The
second case study tests the newly introduced socket API of
CONTIKI, and exposes three subtle bugs in its event system.

The rest of the paper is structured as follows. We start by
presenting property-based testing and some aspects of the tool
we will employ. The next two sections form the main part of
this paper: Section III presents the design and implementation
of our testing framework, and Section IV the results we have
obtained in two case studies. The paper ends with discussing
practical aspects of our framework (Section V), comparison
with related work (Section VI), and some concluding remarks.

II. PROPERTY-BASED TESTING

Property-based testing (PBT) is a novel approach to testing,
where one only needs to specify the generic structure of valid
inputs to the system under test (SUT), along with a number
of properties of the system’s behaviour that are expected
to hold for every valid input. A PBT tool, when supplied
with this information, will automatically produce progressively
more complex random valid inputs, then apply those inputs
to the (program implementing the) SUT while monitoring its
execution, to test that it behaves as expected. By following this
methodology, a tester’s manual tasks are reduced to correctly
specifying the parameters of the SUT and formulating a set of
properties that accurately describe its intended behaviour.

PBT tools operate on properties, which are essentially partial
specifications of the SUT, meaning that they are more compact
and easy to write and understand than full specifications. Users
can make full use of the host language when writing properties,
and thus can accurately describe a wide variety of input-output
relations. They may also write their own test data generators,
should they require greater control over the input generation
process. Compared to testing systems with manually-written
test cases, testing with properties is a faster and less mundane
process. The resulting properties are also much more concise
than a long series of test cases, but, if used properly, can
accomplish more thorough testing of the SUT, by subjecting
it to a much greater variety of inputs than any human tester
would be willing or able to write. Moreover, properties can



serve as a checkable partial specification of a system, one that
is considerably more general than any set of unit tests, and
thus one that is much better at exploring a larger percentage
of behaviours of a system and unveiling its bugs.

Because test inputs are generated randomly in PBT, the
part of a failing test case that is actually responsible for the
falsification of a property can easily become lost inside a lot of
irrelevant data. Thus, PBT tools often aid the programmer in
extracting that part by simplifying the counterexample, through
an automated process called shrinking. In most cases, shrinking
works in the same way as a human tester would approach
debugging: by consecutively removing parts of the failing
input until no more can be removed without making the test
pass. This “minimal” test case will serve as a good starting
point for the debugging process. The shrinking process can
often be fine-tuned through user-defined shrinking strategies.

A test run of a single property typically happens as follows:
1) Randomly generate valid instances for each universally

quantified variable in the property, using the generator
that the user has provided for each such variable.

2) Call the property code with this input.
3) If the property evaluated to ’true’, repeat from 1. Else:
4) While it is possible to shrink the test case to one that is

simpler and fails the property in the same way, shrink it.
5) Report the failing test case and the shrunk input.
In PBT tools, such as the one we employ, this process can

typically be configured in various ways through options. For
example, users can control the number of tests to run, the size
of produced inputs, the number of shrinking attempts, etc.

Let us illustrate PBT and PROPER [8], the tool we use, with
an example. Suppose we want to test the implementation of
a network protocol that provides functions for encoding and
decoding. A natural property that we may be interested in
checking is that for all valid inputs I , if one encodes I and
then decodes its encoded version, one ends up with the original
input I . In the language of PROPER, this can be specified as:

prop_encode_decode() ->
?FORALL(I, input(), I == protocol:decode(protocol:encode(I))).

This code snippet, written in the high-level functional language
Erlang, assumes that the implementation of the protocol is
provided in a module named protocol that provides encode
and decode functions. I is a variable that takes values from the
generator input(), a function that generates random inputs
which in this case are protocol-specific. For simplicity, let
us assume that the protocol operates over strings of ASCII
printable characters. In this case the input generator is:1

input() ->
list(range(32, 127)).

Furthermore, assume that the implementation of the protocol
is buggy for strings whose length is in the range [17..23]; i.e.
for such strings the property does not hold. Below we show

1In fact, one does not even need to write such a definition, if the program
defines a type named input. In this case, the generator and all infrastructure
required for shrinking input values is created automatically by PROPER.

the actual output generated by PROPER when checking this
property in the Erlang shell:

Eshell V6.3 (abort with ^G)
1> proper:quickcheck(protocol_test:prop_encode_decode()).
...............................................................!
Failed: After 64 test(s).
[45,80,58,119,94,62,118,71,71,119,114,123,75,67,62,84,99,60,61,86,67]

Shrinking ...................(19 time(s))
[32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32]
false

Here we see that PROPER ran a total of 63 successful random
tests before generating an input, a string of length 21, that
falsifies the property. Subsequently, PROPER shrank this input,
both in length and in “size” of its elements, down to a minimal
input of length 17 for which the property does not hold. It is
important to realize that the testing process shown above is
completely automatic. (Also, in this case, it is very fast.)

The language of PROPER is very powerful, offering signif-
icantly more than what is shown in this simple example. In
particular, the user can specify much more involved properties
consisting of several input variables, write generators that have
more complex underlying structure (e.g., are balanced trees
of some sort, have the format of an IP packet, etc.). More
importantly, PROPER also comes with support for testing
of stateful systems, i.e., systems whose operation follows
some (finite) state machine model, where states and transitions
between them are associated with pre- and post-conditions. In
Section IV we will employ some of this support, but, for lack
of space, we refer the reader to the manual and tutorials in
PROPER’s website [9] for more information about the above.

III. OUR FRAMEWORK: DESIGN AND IMPLEMENTATION

Let us now describe our framework for property-based
testing of sensor networks. As shown in Fig. 1, it consists
of several components. Besides PROPER, to automatically test
properties of interest, our framework uses COOJA to simulate
the SUTs. Since PROPER can not directly control COOJA, we
implemented a control layer to perform this task. To enable
function-level testing, we created NIFTY, an interface generator
to call C functions from Erlang. NIFTY generates a CONTIKI
application that must be compiled together with the firmware,
and a library in Erlang that forwards the function call interface
on the sensor nodes using a COOJA plugin.

A. COOJA

We use COOJA, the network simulator of the CONTIKI
operating system to simulate the systems we test. COOJA
is a cross-platform simulator and uses different hardware
emulators to simulate a variety of sensor nodes like TMote Sky,
Zolertia Z1 and MicaZ. Simulating the hardware of the nodes
has the advantage that the firmware that is compiled for real
hardware can be used in the simulation without modification.
COOJA also contains multiple radio models. These radio
models range from topology-based ones, where each connection
between nodes is explicitly defined, to more complex ones
that model signal loss over distance, interference and packet
corruption according to the ongoing radio traffic.
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Fig. 1. Our testing framework: overview of the architecture.

As mentioned, PROPER can not directly control the sim-
ulation and we need a control layer to perform this task.
Since COOJA and PROPER are implemented in different
languages (Java and Erlang) our control layer consists of two
components as well: an Erlang library to be used together
with PROPER, and a Java plugin that directly interacts with
COOJA. The Java plugin operates a distributed Erlang node
which allows both components to communicate over the Erlang
distribution mechanism using TCP/IP. The Erlang library of
our control layer provides high-level functions for all of the
functionality that the plugin offers. When we call a function
in the Erlang library, a message representing the requested
operation is constructed and sent to the COOJA plugin. The
plugin deconstructs this message and triggers the requested
action. If a return value is required, then a message containing
this value is sent back to the library.

The control layer is thus able to control most aspects of
the simulation. On a network-global level, we can control
the configuration of the radio environment and change the
topology of the network. The radio configuration depends on
the used radio medium. For the graph-based radio medium we
can specify the links between nodes and the corresponding link
quality. For the radio medium that models loss over distance
(Unit Disk Graph Medium: Distance Loss) we can specify the
transmission range and how link quality decreases over distance.
It is also possible to record all messages that are sent over
the radio medium. These messages can be further analyzed to
reason over the correctness of the used communication protocol.
Our control layer provides a parser for IPv6 packets, making
their analysis easier.

The control layer provides the functionality to add and
remove sensor nodes from the simulation at any time. Removing
a node can for example be used to simulate node failure. It is
also possible to change the position of the nodes. This can be
used to simulate mobile nodes.

It is possible to send and read messages from the serial
line of the nodes. Messages on the serial line are delimited by
newline characters and stored in a FIFO queue that is accessible
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Fig. 2. Overview of the interface generation process.

from the control layer.
Similar to the recorded radio messages of the radio medium,

it is possible to record all hardware events from the nodes.
These hardware events are usually “on”/“off” events for the
simulated hardware. The radio hardware yields events that
indicate packet reception and transmission. This includes events
where the radio hardware detects packet interference.

B. NIFTY

To effectively test the software that controls a sensor network,
we need to be able to test the sensor nodes’ implementation.
Software for the CONTIKI operating system is usually written
in C. Thus, we need to be able to call single C functions
on the sensor nodes. This way we can directly test protocol
implementations and other core components. For this reason
we developed NIFTY, a function call interface generator.

NIFTY processes a C header file that typically contains type
and function declarations and creates a call interface for each
function defined in the header file. If we want to call the
functions in a generic way, we need to be able to tell the call
interface which function should be called with which arguments.
The best way to communicate with the sensor nodes from our
control layer is by using the serial line of the nodes. NIFTY
therefore generates an interface that operates a function call
protocol over the serial line.

To call a function, NIFTY sends a string representing the
function call with the arguments over the serial line to the
node that should execute the call. The call interface of the
node deconstructs the string and calls the function with the
right arguments. The return value of the called function is sent
back over the serial line in a similar manner. Additionally,
NIFTY generates an Erlang library that performs these steps
automatically and hides them behind regular library functions.
Calling a function on a simulated sensor node is not different
than calling any library function.

Fig. 2 illustrates the interface generation process. NIFTY uses
LibClang [10], a high-level C interface for the Clang compiler,
to parse the given header files. This way, we can extract
the relevant type and function information from the abstract
syntax tree provided by LibClang. Anything that involves the
C preprocessor, like defines and includes, are resolved by the
compiler library. Type information is stored into a type table
that contains all relevant information needed to construct the



call interface. A symbol table stores information for functions,
such as the types of their arguments and their return.

After processing the input and creating the type and symbol
table, NIFTY uses a template engine to generate the source files
of the call interface. This template engine contains the static
parts of the output, combined with template tags that encode
the dynamic parts. When the actual output is generated, the
template tags are rendered with the information stored in the
type table and the symbol table, to create the corresponding call
interface. Finally, the generated interface has to be compiled
together with the other source files to build a usable firmware.

The created call interface is implemented as a CONTIKI
application that operates a node’s serial line and listens for
messages. If a message is received, it is parsed by the call
interface.

A message that represents a function call starts with the
number of the function followed by the values of the arguments.
The function number is assigned at the time the interface is
generated. Positive function numbers are used for the functions
that are defined in the header file that NIFTY used to generate
the interface. Negative function numbers are used for utility
functions. These utility functions provide basic support for
dynamic memory management and are equivalents to the
standard C functions malloc, free, and sizeof. Additionally
the interface provides functions to read and write memory.
These utility functions are always part of the call interface.

In addition to these synchronous function calls, we found it
necessary to provide a mechanism that allows it to get feedback
from asynchronous function calls like callback functions.
NIFTY provides an event message type. Event messages are
messages prefixed with "EVENT:" and put in an dedicated
FIFO queue. These messages are otherwise ignored by the call
protocol. A callback function can send event messages to yield
values to the control layer.

C. Using the Framework

Fig. 3 shows how we use our framework for property-based
testing of sensor networks. A sensor network is defined by its
sensor nodes, their firmware, and its network topology. The
topology defines how the sensor nodes are connected with each
other. The behavior of the node software, especially of the
network components, depends on the network topology.

We can define the topology in a file that the simulator
loads when it is started. The sensor nodes and the network
topology are automatically loaded by the simulator. A much
more interesting option however is to test our property with
many different topologies, created dynamically.

Sensor networks change their state over time. Performing
one action can change the result of all subsequent actions. In
fact just progressing the simulation in time can alter the state
of the sensor network. For example, timers can be triggered or
messages can be forwarded. To ensure we have self-contained
test cases, it is therefore necessary to restart the simulator
before each test case. This way we always start from a known
state. Additionally, it is necessary to control in which timesteps
the simulation progresses, since the timings of the inputs can
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Fig. 3. Overview of the the testing process

alter the result of a test case. We can progress the simulation
explicitly by forwarding it a certain amount of time. Some
functions of the control layer and all functions of the generated
call interfaces forward the simulation implicitly.

Finally, in order to retrieve data from the simulation we
need to subscribe to the corresponding data sources. These
data sources are the global radio medium, the hardware events
of a sensor node, and the serial line of a sensor node.

IV. CASE STUDIES

We now evaluate our framework using two case studies. The
first of them illustrates how we can employ property-based
testing to test the energy efficiency of sensor network protocols
in general, and MAC protocols in particular. We start from
this case study because the support it requires from the PBT
tool has already been presented in Section II. A second case
study shows how we can employ PROPER’s support for stateful
testing and discover scenarios that show bugs in the socket
API of CONTIKI.

A. Energy Efficiency of MAC Protocols

Energy efficiency is important for sensor networks. During
deployments, it is crucial to preserve the battery of the nodes
to maximize their lifetime. We therefore test the duty cycle
of the nodes’ radio component, the component that usually
consumes the most energy [11]. Using our PBT framework we
examine if there are network configurations for which the duty
cycle is above a certain threshold.

Our setting uses two node types: UDP server and UDP
client nodes. Client nodes send periodically messages to server
nodes. The node types that we use are taken from the rpl-udp
example of the CONTIKI distribution, which uses IPv6 and
RPL. As a MAC layer, the network layer that performs duty
cycling, we use CONTIKI’s implementation of X-MAC [12].

We list the property for this scenario in Fig. 5. This property
checks that for all nodes of the network the duty cycle is
below 10%. We check this property for randomly generated
network topologies. In line 4 of our property, the simulator is
started with no nodes. We add the nodes for each test case to the
simulator (line 6) and progress the simulation of the generated
WSN by two minutes (120 seconds). After the simulation
finishes, we calculate the duty cycle of each node and check



Fig. 4. Shrinking can reduce the size of test cases significantly. The left window shows an automatically generated WSN, consisting of 15 nodes, for which
the duty cycle property fails. This network is automatically shrunk down to only six nodes (shown in the middle). The window on the right is a close-up of the
shrunk test case, and reveals that all messages between the two cluster of nodes need to be forwarded by node 6, which therefore has duty cycle of 10%.

1 prop_duty_cycle_below_threshold() ->
2 ?FORALL(Motes, configuration(),
3 begin
4 ok = setup()
5 {running, Handler} = nifty_cooja:state(),
6 Mote_IDs = add_motes(Handler, Motes),
7 SimTime = 120 * 1000, % simulate for 2 minutes (120 secs)
8 ok = nifty_cooja:simulation_step(Handler, SimTime),
9 MaxDutyCycle = max_duty_cycle(Handler, Mote_IDs, Motes),

10 ok = nifty_cooja:exit(),
11 MaxDutyCycle < 0.1 % check that is below 10%
12 end).

Fig. 5. Property to check the duty cycling of a random WSN.

that its maximum is below our 10% threshold. We extract this
information from the hardware events by accumulating the
difference between all RADIO_ON and RADIO_OFF events, to get
the total time the radio of each node was on, and divide it by
the total simulation time.

To generate network topologies, we implemented a generator
configuration() that creates a list with elements of type
mote(). A mote() is a tuple consisting of a coordinates() and
a mote_type(). Coordinates are 3-tuples of floats and we set
their x and y values to be between 0.0 and 100.0 and their z
value to 0.0. This creates nodes at positions that are uniformly
distributed in a plane of 100 × 100 units. The transmission
range of all nodes is 50 units. Mote types are either UDP
clients ("sky1") or UDP servers ("sky2"). The following code
snippet lists the generators that create network configurations:2

configuration() ->
list(mote()).

mote() ->
tuple([coordinates(), mote_type()]).

coordinates() ->
tuple([float(0.0, 100.0), float(0.0, 100.0), 0.0]).

mote_type() ->
weighted_union([{50, "sky1"}, {50, "sky2"}]).

2In mode_type(), we specify that the mote types are selected with equal
50% probability only to show how different probabilities could be specified.

We use the control layer of our framework to add the generated
nodes to the simulation, and to record the hardware events:

add_motes(Handler, Motes) ->
[add_mote(Handler, Mote) || Mote <- Motes].

add_mote(Handler, {Pos, Type}) ->
{ok, ID} = nifty_cooja:mote_add(Handler, Type),
ok = nifty_cooja:mote_set_pos(Handler, ID, Pos),
ok = nifty_cooja:mote_hw_listen(Handler, ID),
ID.

In our first experiment we test the property of Fig. 5. The
property fails on a network configuration of around fifteen
nodes. The left window of Fig. 4 shows one configuration that
falsifies the property. When this configuration is found, PROPER
automatically shrinks it down to a smaller configuration that
also falsifies the property. As in the protocol example of
Section II that reduced the length of the string, shrinking
in this case tries to reduce the amount of nodes to a minimum.
It also tries to shrink their x and y coordinates to small values.
The shrinking process finds the configuration shown in the
middle window of Fig. 4. The shrunken test case contains
only six nodes. Three of them form a cluster at position
(x = 0, y = 0) and two more nodes form a cluster at position
(x = 0, y = 50.25). Both clusters are just barely out of
radio range from each other and cannot communicate directly.
Therefore, all traffic between those two clusters has to go
through node 6 at position (x = 0, y = 0.25), resulting in a
duty cycle of 10.07% for this node.

Having a configuration with only six nodes that falsifies this
property is an indication that we made a bad choice when choos-
ing our MAC layer. ContikiMAC [13] is generally regarded as
more energy efficient than X-MAC [14]. Therefore, our second
experiment is to switch the MAC layer to ContikiMAC and
rerun the test on this network configuration.3 Now, node 6,
which failed the property for X-MAC, has a duty cycle of
only 1.5% with ContikiMAC. We continue this experiment by

3PROPER provides support for saving and reusing a failing test case [9].



Fig. 6. A sensor network topology, consisting of only six nodes, for which
some node(s) have lower duty cycle using X-MAC rather than ContikiMAC.

testing 1, 000 randomly generated configurations. For all of
them, PBT finds that the property holds. This is not a proof,
but it increases our confidence that the property is actually true
in this particular setting.

This second experiment might suggest that ContikiMAC has
a lower energy consumption than X-MAC. Is this always the
case? We do not have to do a complicated analysis! Using our
framework, we can simply write a property that tests that this
is true for all topologies. The relevant code is shown below:
prop_ContikiMAC_more_efficient() ->
?FORALL(Motes, configuration(),
begin
Contiki_MAC = duty_cycles(Motes, contiki),
XMAC = duty_cycles(Motes, xmac),
lists:all(fun ({C,X}) -> C < X end, lists:zip(Contiki_MAC,XMAC))

end).

This property tests that, for all randomly generated sensor
network configurations, all their nodes have a lower duty cycle
when using ContikiMAC than when using X-MAC. Testing
this property, however, quickly reveals that it is not true. Our
framework finds a sensor network with only six nodes, shown
in Fig. 6, where at least one node has a higher duty cycle when
using ContikiMAC.

This third experiment makes a more general point. With
property-based testing it is very easy to compare the perfor-
mance of two “similar” implementations for a wide variety of
different networks. Moreover, a PBT tool’s shrinking ability
provides us with test cases that are much easier to analyze than
the generated test cases that are found to falsify the property.

Note however that in a PBT tool there is a trade-off between
specifying simple generators purely based on types without any
domain knowledge and the time required for failing test cases
to shrink. For example, during our experiments we experienced
that while finding counterexamples (network configurations
that falsify the stated properties) required only 10 to 40 test
runs, their shrinking took much longer. In our first example
(duty-cycling of X-MAC) around 2000 additional simulations
were run for the shrinking.

The problem is in how we generate the network layout
by randomly placing the network nodes in a square. We
let the network topology automatically be determined by

the simulation: two nodes can communicate if and only if
they are within radio range. The shrinking algorithm cannot
take into account this topology information. It shrinks the
counterexample according to the generator used, which means
that the numerical values of the node positions are shrunk
towards 0. This results in many shrinking steps that either have
no effect or alter the network topology in an unforeseen way.

PROPER comes with support for writing generators that
represent the application domain much better. For example,
in this case study we can specify the network configuration
as an undirected graph, where the graph nodes represent the
network nodes and the edges represent the ability of two nodes
to communicate with each other. A generator that creates such
a graphs according to the Erdős–Rényi model [15] can be
implemented as follows:
er_graph({Nominator, Denominator}) ->
WeightLink = Nominator,
WeightNoLink = Denominator-Nominator,
?SIZED(Size, er_graph(Size, WeightLink, WeightNoLink, [], [])).

er_graph(0, _, _, V, E) ->
{V, E};

er_graph(Size, WeightLink, WeightNoLink, Vertices, Edges) ->
?LET(LinksDef, vector(length(Vertices), edge(W1, W2)),

begin
NewVertex = length(Vertices),
NewEdges = build_edges(LinksDef, Vertices, NewVertex),
?LAZY(er_graph(Size-1, WeightEdge, WeightNoEdge,

[NewVertex|Vertices], NewEdges++Edges))
end).

edge(W1, W2) ->
?LAZY(weighted_union([{W1, true}, {W2, false}])).

This generator produces random graphs by recursively adding
one vertex to the graph at a time and creating the edges between
the newly added vertex and all other vertices with the given
probability. (Refer to PROPER’s manual [9] for the explanation
of ?SIZED, ?LET and ?LAZY).

While such a generator is more complex than the original
one, it defines the network topology explicitly. The shrinking
will now decrease the number of nodes and links between them.
Each shrinking step is a meaningful one and will produce a
smaller and less connected network, which makes the shrinking
much faster. This graph model shrinks in only 50 to 150 steps.

B. CONTIKI’s Socket API

Recently, CONTIKI got a new API for TCP and UDP
sockets to replace the old proto-socket interface. In this
API, functions that require network communication are non-
blocking. For example, the function tcp_socket_connect will
return immediately. When the connection has been established
successfully, an "established" event will be triggered via an
event callback function. We wanted to test that the new
API behaves correctly when it establishes and terminates
connections.

Something to note regarding testing this socket API is that
its functions have to be called in a specific order. For example,
it does not make sense to try to connect to a socket that is not
even listening. In such situations, PROPER’s support for finite
state machine testing [9] comes in handy.
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In contrast to the previous set of experiments, here we will
use a fixed network configuration. The setup is a simple multi-
hop sensor network consisting of four Zolertia Z1 nodes. These
nodes are positioned in a circle so that each node can only
communicate with its two neighbors. We use CONTIKI’s IPv6
network layer together with RPL for routing. The simulator’s
radio environment is configured to have no loss. That means
that no packets are lost due to a decreasing signal quality over
distance.

In order to expose the socket API, we generated a NIFTY
function call interface for it. Additionally, we created interfaces
for some auxiliary functions like accessing the IP address of
the nodes.

We tested the interface by executing a randomly generated
sequence of API functions. Our property was quite simple:
prop_socketAPI() ->
?FORALL(Cmds, proper_fsm:commands(?MODULE),
begin
ok = setup(),
{_H, {_S,_SD}, Result} = proper_fsm:run_commands(?MODULE, Cmds),
ok = nifty_cooja:exit(),
Result == ok

end).

In words: for all random sequences of commands specified in
this test module, set up the simulation environment (the code
for this function is not shown), run the sequence of commands
on the simulator getting back a result, exit the simulator, and
consider the property successful if the result was ’ok’.

To generate command sequences, we used the support of the
proper_fsm module to specify a finite state machine (FSM)
that dictates the order in which the API functions can be called.
The states of this FSM and transitions between them are shown
in Fig. 7. In the language of PROPER, the transitions of this
FSM are specified as follows:

closed(S) ->
[{listening, {call, ?MODULE, listen, [sockets(S), tcp_port()]}},
{non_existent, {call, ?MODULE, cleanup, [sockets(S)]}}].

This specifies the transitions out of the closed state of the FSM.
It states that from this state we can transition to the listening

state by executing the command listen with the listed symbolic
arguments sockets(S) and tcp_port(). We can also transition
into the state non_existent by executing the command cleanup

with the argument sockets(S). When a command is executed,
the arguments to the command are generated as well. So the
tcp_port() call generates a suitable port number. The commands()

generator of the proper_fsm module creates random sequences
of commands that respect the transitions of the specified FSM.

To check that the result of executing the commands is OK,
each of the commands has to satisfy a set of post-conditions,
which PROPER also allows us to specify. For example, a post-
condition for closing the connection looks like this:

postcondition(_, _, _, {call, _, close, _}, Result) ->
{M1, M2} = Result#socket_state.motes,
T = ?TIMEOUT_CLOSE,
check_event(M1, "closed", T) andalso check_event(M2, "closed", T).

This post-condition evaluates to true if the two nodes of a TCP
connection trigger a "closed" event before the given timeout.
If at least one of them does not trigger such an event, the post-
condition evaluates to false. If this happens we have found a
test case that falsifies our property.

When run in our framework, the property fails quickly
after establishing a connection with the following command
sequence:

create -> listen -> connect -> close -> listen -> connect
-> cleanup -> create -> cleanup -> create -> listen

Shrinking in this case means reducing the length of the
command sequence as well as shrinking the “size” of any
values in arguments of the commands. (This is not shown
here.) After shrinking the failing test case, we end up with a
minimal test case of just four commands:

create -> listen -> connect -> close

This command sequence fails because the post-condition of
the close command fails. When we rerun the test case in the
simulator and observe the output of the nodes, we can see
that the cause of the property failing is a supposedly received
message of length 0. Receiving a message triggers a "received"

event. However we have not been sending a message. This
bug occurs on every successful connection.

We decided to bypass this bug and continue testing the
interface in order to perhaps find more interesting bugs. We
can bypass this bug by adjusting the post-condition for the
command connect to be as follows:

postcondition(_, _, _, {call, _, connect, _}, Result) ->
{M1, M2} = Result#socket_state.motes,
T = ?TIMEOUT_CONNECT,
check_event(M1, "established", T) andalso
check_event(M1, "received", T) andalso
check_event(M2, "established", T).

After this change, the property fails again. After shrinking, we
end up with sequence of six commands:

create -> listen -> connect -> close -> listen -> connect

This command sequence fails because the post-condition of the
connect command evaluates to false. Rerunning the test case



reveals a new problem. The close command triggers the "closed"

event twice on the socket that calls the tcp_socket_close()

method of the API. We observe the first "closed" event in the
post-condition of the close command and continue executing
commands. The next time we check for events, we will observe
the second "closed" event and our property fails.

At this point, we should probably have stopped testing and
have tried to fix the bugs we found. Both of them indicate
problems in the implemented event system. However we did
not do that. As an experiment, we ignored the double "closed"

event in our property, again by appropriately modifying some
post-condition, and reran the tests.

The property failed again! In fact, it now failed with a
sequence of 14 commands, which was shrunk down to the
following sequence:

create -> listen -> connect -> cleanup -> create ->
listen -> connect -> close (on socket that listened)

Executing this command sequence, we can not observe any
"closed" event on the socket that did not execute the close

command, although the other socket triggers such an event.
The first two bugs we found occur every time a connection

is established or closed and are easy to catch with traditional
testing methods. This final bug, however, is only triggered by
a particular sequence of commands. Property-based testing is
especially effective in finding these kind of bugs. It is very
easy to generate a large number of test cases after specifying
a property. Eventually the bug will be triggered.

We reported all three bugs to the issue tracker of the CONTIKI
developer repository [16], [17]. At the time of this writing, the
double close event bug is already confirmed by another user;
we expect the other two bugs to be confirmed by the CONTIKI
developers.

V. DISCUSSION

The property specification language that PROPER offers
is Turing complete. In principle, it allows us to express any
possible property. We can test for functional correctness as well
as non-functional properties (e.g. timing, energy consumption,
etc.). In practice, the testing is limited by the capabilities of the
simulator, since we can only test behavior that we can observe.
A notable limitation in this regard is the simulation of the
radio medium. While COOJA offers multiple radio models, the
behavior of real world radio environments is more complex.

The call interfaces that NIFTY generates occupy the serial
line of the sensor nodes. This means that other applications
are not able to use it anymore without interfering with the call
interface. In practice this is not a problem since deployments
usually do not use the serial line since it contradicts with the
basic notion of going wireless.

For APIs with a high number of functions NIFTY interfaces
can have a large memory footprint. Firmwares can become too
big for very resource constrained devices. We are alleviating
this problem by offering options to switch off specific memory
demanding features in the generated interface. Using the serial
line for the call interface can have an effect on tightly timed

systems. CONTIKI is a cooperative multi-tasking system, which
means that while we are executing a function call all other
tasks are blocked from execution. In practice long running
function calls should be avoided when testing those systems.

Scalability-wise, our approach is currently limited by the
performance of the simulator which is used; not the PBT tool.

VI. RELATED WORK

The idea of property-based testing and using a high-level
language for testing purposes is not new. In the context of
programming languages has been pioneered by the QuickCheck
library [18] for the lazy functional language Haskell. Similar
tools have been developed for other languages, including
the commercial Erlang QuickCheck tool and the open-source
PropEr tool, and these tools have been applied to test telecom
software [19] and Web Services [20]. However, to the best of
our knowledge, our work is the first one to apply property-based
testing in the area of wireless sensor networks (WSNs).

Still, a variety of other testing and verification techniques
have been explored before for sensor networks. KleeNet [21]
is a debugging environment that extends the technique of
KLEE [22] to WSNs. It executes unmodified sensor network
applications on symbolic input and automatically injects
non-deterministic failures like packet corruption or packet
duplication. KleeNet is independent of the underlying operating
system, but each OS has to provide a front-end to KLEE, which
abstracts from the sensor node hardware. T-Check [23] is an
explicit model checker for TinyOS applications built upon
the TOSSIM [24] simulator. The model checker emulates the
hardware on the level of TinyOS interfaces which abstracts for
low-level interrupt driven concurrency for the sake of scalability.
Bucur and Kwiatkowska present a tool for software verification
of single MSP430-based wireless sensor nodes [25] . Their tool
translates embedded C into standard C, which is then checked
with CBMC, a software verifier for ANSI C. Anquiro [26] is
a domain-specific model checker for statically verifying the
correctness of sensor network software. It abstracts from the
low-level functionality of the sensor node hardware and radio
communication to be able to check larger sensor networks.

All the above techniques are good in finding errors since the
inherent method of exploring all states or execution paths will
find these bugs with certainty. These tools however operate on
a model of the sensor network (Anquiro) or abstract away many
aspects from the actual sensor node hardware (KleeNet and
T-Check). The verification framework of Bucur et al. has an
accurate model of the MSP430 CPU but verifies only one node.
In contrast, besides being easier to use, our framework uses the
real firmware of the nodes that could be uploaded to a physical
node without any modifications. Additionally, the hardware
of the sensor node is simulated in COOJA, which means that
our framework is able to also find bugs that involve the nodes’
hardware. Software verification, model checking, and symbolic
execution do not scale well with increasing network sizes and
complexity of the software of the nodes. The scalability of our
framework depends only on the performance of COOJA, which
means, that we can test larger systems which run for a longer



time. For example, we are able to test systems with 50 sensor
nodes without any problems.

Passive Distributed Assertions (PDA) [27] is a mechanism
that allows the sensor network programmer to specify assertions
over multiple sensor nodes. The sensor nodes automatically
generate traces that later can be evaluated to check if the
distributed assertions held. PDAs can be used to find distributed
bugs in deployed sensor networks. Property-based testing aims
to test sensor networks thoroughly before deployment. The
properties are specified in an external language and do not
require the modification of the SUT. It is possible to combine
PDAs with our property-based testing framework to test existing
PDA specifications with generated input.

VII. CONCLUDING REMARKS

We have argued for the use of property-based testing in
the area of sensor network programming and presented an
effective and easy to use framework to apply this testing
methodology. The use of a high-level and expressive language
for specifying properties and generators, combined with the
underlying infrastructure for being able to manipulate low-level
C and sensor network simulator code from it, has allowed us
to test relatively complex software and uncover subtle and
hard-to-find bugs in it. Moreover, the shrinking ability of our
PBT tool has managed to produce test cases that make it easier,
if not very easy, to reason about the source of these bugs.

In the near future, we plan to apply our framework to more
sensor network code; not only to test other components of
CONTIKI’s implementation but also actual WSN applications.
We encourage others to do alike and hope that this work will
pave the way in developing more dependable and reliable
sensor networks.
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