
A PropEr Integration of Types 
and Function Specifications 
with Property-based Testing

Manolis Papadakis    Kostis Sagonas



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

How Erlang modules used to look



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

How modern Erlang modules look



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

PropEr: A property-based testing tool
 Inspired by QuickCheck
 Available open source under GPL
 Has support for

− Writing properties and test case generators
?FORALL/3, ?IMPLIES, ?SUCHTHAT/3, ?SHRINK/2,
?LAZY/1, ?WHENFAIL/2, ?LET/3, ?SIZED/2, 
aggregate/2, choose2, oneof/1, ...

− Concurrent/parallel “statem” and “fsm” testing
 Full integration with the language of types and 

function specifications
− Generators often come for free!



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Testing simple properties (1)
-module(simple_props).

%% Properties are automatically exported.
-include_lib("proper/include/proper.hrl").

%% Functions that start with prop_ are considered properties
prop_t2b_b2t() ->
  ?FORALL(T, term(), T =:= binary_to_term(term_to_binary(T))).

1> c(simple_props).
{ok,simple_props}
2> proper:quickcheck(simple_props:prop_t2b_b2t()).
...................................................
.................................................
OK: Passed 100 test(s)
true



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Testing simple properties (2)

%% Testing the base64 module:
%%   encode should be symmetric to decode:

prop_enc_dec() ->
  ?FORALL(Msg, union([binary(), list(range(1,255))]),

    begin
      EncDecMsg = base64:decode(base64:encode(Msg)),
      case is_binary(Msg) of
        true  -> EncDecMsg =:= Msg;
        false -> EncDecMsg =:= list_to_binary(Msg)
      end
    end).



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

PropEr integration with simple types

%% Using a user-defined simple type as a generator
-type bl() :: binary() | [1..255].

prop_enc_dec() ->
  ?FORALL(Msg, bl(),

    begin
      EncDecMsg = base64:decode(base64:encode(Msg)),
      case is_binary(Msg) of
        true  -> EncDecMsg =:= Msg;
        false -> EncDecMsg =:= list_to_binary(Msg)
      end
    end).



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

PropEr shrinking

%% A lists delete implementation
-spec delete(T, list(T)) -> list(T).
delete(X, L) ->
  delete(X, L, []).

delete(_, [], Acc) ->
  lists:reverse(Acc);
delete(X, [X|Rest], Acc) ->
  lists:reverse(Acc) ++ Rest;
delete(X, [Y|Rest], Acc) ->
  delete(X, Rest, [Y|Acc]).

prop_delete() ->
  ?FORALL({X,L}, {integer(),list(integer())},
          not lists:member(X, delete(X, L))).



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

PropEr shrinking

41> c(simple_props).
{ok,simple_props}
42> proper:quickcheck(simple_props:prop_delete()).
.........................................!
Failed: After 42 test(s).
{12,[-36,-1,-2,7,19,-14,40,-6,-8,42,-8,12,12,-17,3]}

Shrinking ...(3 time(s))
{12,[12,12]}
false



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

PropEr integration with types

prop_delete() ->
  ?FORALL({X,L}, {integer(),tree(integer())},
          not lists:member(X, delete(X, L))).

-type tree(T) :: 'leaf' | {'node',T,tree(T),tree(T)}.

%% A tree delete implementation
-spec delete(T, tree(T)) -> tree(T).
delete(X, leaf) ->
  leaf;
delete(X, {node,X,L,R}) ->
  join(L, R);
delete(X, {node,Y,L,R}) ->
  {node,Y,delete(X,L),delete(X,R)}.

join(leaf, T) -> T;
join({node,X,L,R}, T) ->
  {node,X,join(L,R),T}.



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

What one would have to write in EQC

tree(G) ->
  ?SIZED(S, tree(S, G)).

tree(0, _) ->
  leaf;
tree(S, G) ->
  frequency([

 {1, tree(0, G)},
 {9, ?LAZY(

          ?LETSHRINK(
            [L, R],

    [tree(S div 2, G), tree(S div 2, G)],
    {node, G, L, R}

     ))}
  ]).



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

What one has to write in PropEr

This slide intentionally left blank



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Integration with recursive types

41> c(mytrees).
{ok,mytrees}
42> proper:quickcheck(mytrees:prop_delete()).
.......................!
Failed: After 24 test(s).
{6,{node,19,{node,-19,leaf,leaf},
            {node,6,leaf,{node,6,leaf,leaf}}}}

Shrinking .(1 time(s))
{6,{node,6,{node,6,leaf,leaf}}}
false



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Generators from recursive types

Takes place, roughly, in the following steps
 Detect recursion
 Inline (non-recursive) type definitions
 Normalize by pushing unions to the top level
 Find base cases
 Prepare the recursive calls
 Determine shrinking behavior
 Compose a generator



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Example: detecting recursion



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Example: after inlining



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Example: after normalization



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Example: the generated generator



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

PropEr integration with remote types

-type array_opt() :: ’fixed’ | non_neg_integer()
                   | {’default’, term()}
                   | {’fixed’, boolean()}
                   | {’size’, non_neg_integer()}.
-type array_opts() :: array_opt() | [array_opt()].

 We want to test that array:new/0 can handle 
any combination of options

 Why write a custom generator (which may rot)?
 We can use the remote type as a generator!

-module(types).
-include_lib("proper/include/proper.hrl").

prop_new_array_opts() ->
  ?FORALL(Opts, array:array_opts(),
          array:is_array(array:new(Opts))).



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

PropEr testing of specs

-module(myspecs).

-export([divide/2, filter/2, max/1]).

-spec divide(integer(), integer()) -> integer().
divide(A, B) ->
  A div B.

-spec filter(fun((T) -> term()), [T]) -> [T].
filter(Fun, List) ->
  lists:filter(Fun, List).

-spec max([T]) -> T.
max(List) ->
  lists:max(List).



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

1> c(myspecs).
{ok,myspecs}
2> proper:check_spec({myspecs,divide,2}).
!
Failed: After 1 test(s).
An exception was raised: error:badarith.
Stacktrace: [{myspecs,divide,2}].
[0,0]

Shrinking (0 time(s))
[0,0]
false
      .... AFTER FIXING THE PROBLEMS ....
42> proper:check_specs(myspecs).

PropEr testing of specs



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

PropEr already used out there!



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Some observations from PropEr uses

 Erlang’s type language is often less expressive 
than desired for property-based testing
– e.g. not possible to specify that binaries should 

contain valid UTF8 characters
 Function specs cannot express argument 

dependencies
– e.g. dependencies between args of 

lists:nth/2
 Users often under-specify function domains
 Function signatures can often be used as simple 

specifications of functions



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Lessons learned

 Unit testing and property-based testing require 
different mindsets
– Difficult to come up with “interesting” properties

– Tricky to express them
• often one debugs the property rather than the code

 Writing generators for recursive types is tricky 
and requires significant time and effort
– PropEr significantly eases this task



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

Some PropEr advice

 Start with testing the functional core
 Break the testing into smaller, simpler to express 

(partial) correctness properties
 Write properties for readability
 For generators of recursive datatypes

– Just write the data type and rely on PropEr

– Put a global size bound if the above is not enough

– Only if the steps above are not enough resort to 
using ?LAZY/1, ?LETSHRINK/1, resize, …



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

More info on our PropEr website


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

