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How Erlang modules used to look
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How modern Erlang modules look
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PropEr: A property-based testing tool
 Inspired by QuickCheck
 Available open source under GPL
 Has support for

− Writing properties and test case generators
?FORALL/3, ?IMPLIES, ?SUCHTHAT/3, ?SHRINK/2,
?LAZY/1, ?WHENFAIL/2, ?LET/3, ?SIZED/2, 
aggregate/2, choose2, oneof/1, ...

− Concurrent/parallel “statem” and “fsm” testing
 Full integration with the language of types and 

function specifications
− Generators often come for free!
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Testing simple properties (1)
-module(simple_props).

%% Properties are automatically exported.
-include_lib("proper/include/proper.hrl").

%% Functions that start with prop_ are considered properties
prop_t2b_b2t() ->
  ?FORALL(T, term(), T =:= binary_to_term(term_to_binary(T))).

1> c(simple_props).
{ok,simple_props}
2> proper:quickcheck(simple_props:prop_t2b_b2t()).
...................................................
.................................................
OK: Passed 100 test(s)
true
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Testing simple properties (2)

%% Testing the base64 module:
%%   encode should be symmetric to decode:

prop_enc_dec() ->
  ?FORALL(Msg, union([binary(), list(range(1,255))]),

    begin
      EncDecMsg = base64:decode(base64:encode(Msg)),
      case is_binary(Msg) of
        true  -> EncDecMsg =:= Msg;
        false -> EncDecMsg =:= list_to_binary(Msg)
      end
    end).
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PropEr integration with simple types

%% Using a user-defined simple type as a generator
-type bl() :: binary() | [1..255].

prop_enc_dec() ->
  ?FORALL(Msg, bl(),

    begin
      EncDecMsg = base64:decode(base64:encode(Msg)),
      case is_binary(Msg) of
        true  -> EncDecMsg =:= Msg;
        false -> EncDecMsg =:= list_to_binary(Msg)
      end
    end).
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PropEr shrinking

%% A lists delete implementation
-spec delete(T, list(T)) -> list(T).
delete(X, L) ->
  delete(X, L, []).

delete(_, [], Acc) ->
  lists:reverse(Acc);
delete(X, [X|Rest], Acc) ->
  lists:reverse(Acc) ++ Rest;
delete(X, [Y|Rest], Acc) ->
  delete(X, Rest, [Y|Acc]).

prop_delete() ->
  ?FORALL({X,L}, {integer(),list(integer())},
          not lists:member(X, delete(X, L))).
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PropEr shrinking

41> c(simple_props).
{ok,simple_props}
42> proper:quickcheck(simple_props:prop_delete()).
.........................................!
Failed: After 42 test(s).
{12,[-36,-1,-2,7,19,-14,40,-6,-8,42,-8,12,12,-17,3]}

Shrinking ...(3 time(s))
{12,[12,12]}
false
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PropEr integration with types

prop_delete() ->
  ?FORALL({X,L}, {integer(),tree(integer())},
          not lists:member(X, delete(X, L))).

-type tree(T) :: 'leaf' | {'node',T,tree(T),tree(T)}.

%% A tree delete implementation
-spec delete(T, tree(T)) -> tree(T).
delete(X, leaf) ->
  leaf;
delete(X, {node,X,L,R}) ->
  join(L, R);
delete(X, {node,Y,L,R}) ->
  {node,Y,delete(X,L),delete(X,R)}.

join(leaf, T) -> T;
join({node,X,L,R}, T) ->
  {node,X,join(L,R),T}.
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What one would have to write in EQC

tree(G) ->
  ?SIZED(S, tree(S, G)).

tree(0, _) ->
  leaf;
tree(S, G) ->
  frequency([

 {1, tree(0, G)},
 {9, ?LAZY(

          ?LETSHRINK(
            [L, R],

    [tree(S div 2, G), tree(S div 2, G)],
    {node, G, L, R}

     ))}
  ]).
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What one has to write in PropEr

This slide intentionally left blank
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Integration with recursive types

41> c(mytrees).
{ok,mytrees}
42> proper:quickcheck(mytrees:prop_delete()).
.......................!
Failed: After 24 test(s).
{6,{node,19,{node,-19,leaf,leaf},
            {node,6,leaf,{node,6,leaf,leaf}}}}

Shrinking .(1 time(s))
{6,{node,6,{node,6,leaf,leaf}}}
false
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Generators from recursive types

Takes place, roughly, in the following steps
 Detect recursion
 Inline (non-recursive) type definitions
 Normalize by pushing unions to the top level
 Find base cases
 Prepare the recursive calls
 Determine shrinking behavior
 Compose a generator
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Example: detecting recursion
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Example: after inlining
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Example: after normalization
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Example: the generated generator



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

PropEr integration with remote types

-type array_opt() :: ’fixed’ | non_neg_integer()
                   | {’default’, term()}
                   | {’fixed’, boolean()}
                   | {’size’, non_neg_integer()}.
-type array_opts() :: array_opt() | [array_opt()].

 We want to test that array:new/0 can handle 
any combination of options

 Why write a custom generator (which may rot)?
 We can use the remote type as a generator!

-module(types).
-include_lib("proper/include/proper.hrl").

prop_new_array_opts() ->
  ?FORALL(Opts, array:array_opts(),
          array:is_array(array:new(Opts))).
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PropEr testing of specs

-module(myspecs).

-export([divide/2, filter/2, max/1]).

-spec divide(integer(), integer()) -> integer().
divide(A, B) ->
  A div B.

-spec filter(fun((T) -> term()), [T]) -> [T].
filter(Fun, List) ->
  lists:filter(Fun, List).

-spec max([T]) -> T.
max(List) ->
  lists:max(List).



Kostis Sagonas  A PropEr integration of types and specs with property-based testing

1> c(myspecs).
{ok,myspecs}
2> proper:check_spec({myspecs,divide,2}).
!
Failed: After 1 test(s).
An exception was raised: error:badarith.
Stacktrace: [{myspecs,divide,2}].
[0,0]

Shrinking (0 time(s))
[0,0]
false
      .... AFTER FIXING THE PROBLEMS ....
42> proper:check_specs(myspecs).

PropEr testing of specs
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PropEr already used out there!
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Some observations from PropEr uses

 Erlang’s type language is often less expressive 
than desired for property-based testing
– e.g. not possible to specify that binaries should 

contain valid UTF8 characters
 Function specs cannot express argument 

dependencies
– e.g. dependencies between args of 

lists:nth/2
 Users often under-specify function domains
 Function signatures can often be used as simple 

specifications of functions
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Lessons learned

 Unit testing and property-based testing require 
different mindsets
– Difficult to come up with “interesting” properties

– Tricky to express them
• often one debugs the property rather than the code

 Writing generators for recursive types is tricky 
and requires significant time and effort
– PropEr significantly eases this task
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Some PropEr advice

 Start with testing the functional core
 Break the testing into smaller, simpler to express 

(partial) correctness properties
 Write properties for readability
 For generators of recursive datatypes

– Just write the data type and rely on PropEr

– Put a global size bound if the above is not enough

– Only if the steps above are not enough resort to 
using ?LAZY/1, ?LETSHRINK/1, resize, …
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More info on our PropEr website
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