A PropEr Integration of Types and Function Specifications
with Property-Based Testing

Manolis Papadakis *

Konstantinos Sagonas

1,2

1 School of Electrical and Computer Engineering, National Technical University of Athens, Greece
2 Department of Information Technology, Uppsala University, Sweden

manopapad@softlab.ntua.gr

Abstract

We present a tight integration of the language of types and function
specifications of Erlang with property-based testing. To achieve this
integration we have developed from scratch PropEr, an open-source
QuickCheck-inspired property-based testing tool. We present tech-
nical details of this integration, most notably how the conversion
of recursive types into appropriate generators takes place and how
function specifications can be turned automatically into simple
properties in order to exercise the code of these functions. Finally,
we present experiences and advice for the proper use of PropEr.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools (e.g., data genera-
tors, coverage testing); D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Data types and structures

General Terms Algorithms, Languages

Keywords property-based testing, type declarations, function sig-
natures, test generators, Erlang

1. Introduction

For some years now, Erlang comes with a language of type declara-
tions and function specifications, so called specs. This language has
so far been used for expressing users’ intentions, detecting discrep-
ancies between these intentions and the actual implementation of
functions, and for generating documentation for Erlang programs.
By now it is quite common to see Erlang modules or even complete
applications that are full of specs. Concurrently with this activity,
property-based testing has become quite popular among Erlang de-
velopers. Sadly, however, the two technologies have been discon-
nected till now. Type-aware Erlang programmers can not use type
information to get some simple tests “for free” and QuickCheck-
conscious users have to manually write (often complicated) gener-
ators for data structures manipulated by their programs.

Considering this situation, we decided to do something about it:
we embarked on a project that would integrate these technologies.
Since the main tool for property-based testing in Erlang is propri-
etary and closed-source, we had to create our own tool. It is called
PropEr and is freely available as open-source [7].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’11, September 23, 2011, Tokyo, Japan.

Copyright © 2011 ACM 978-1-4503-0859-5/11/09. .. $10.00

kostis@cs.ntua.gr

This paper presents issues that have to be addressed in order
to achieve a tight and proper integration of types and specs with
property-based testing in Erlang. As we will see, PropEr is capa-
ble of automatically using types, both module-local and remote, as
generators and turning function specifications into simple proper-
ties that can test the agreement between the programmers’ inten-
tions and the implementation of these functions. Achieving all this
is not trivial and the paper describes in detail the techniques that
make this integration possible.

The next section describes the Erlang type language in detail. It
is followed by Section |3|that reviews property-based testing and a
section that describes the PropEr tool and its built-in language of
generators (Section[d). Section[5] which is the main section of this
paper, describes the integration of Erlang’s type language with the
language of PropEr generators, focusing on the translation scheme
used to automatically create generators from recursive types. Sec-
tion[f] presents some experiences from using PropEr in Erlang code
bases and the paper ends with some concluding remarks.

2. The Erlang Type Language

The type language used in Erlang [S] is quite similar to the type
notation used by the EDoc documentation tool [4] and has been
designed with expressive power in mind and in order to best capture
the style of programming that programmers of dynamic languages
often follow. For example, the language allows for singleton types,
for taking arbitrary unions of existing types and for constructing
a new type without having to wrap terms in tagged tuples (i.e. in
constructors). Type declarations and function specifications are not
used to guarantee type safety, because the Erlang language already
provides this guarantee through runtime checks. Instead, they have
been primarily designed to allow detection of definite type errors by
the Dialyzer static analysis tool [6]. Nowadays, types and function
specifications are quite widespread and it is quite common to find
code bases where most exported functions have type signatures.

2.1 Built-in Types

Types are used to describe sets of Erlang terms, both finite and
infinite. The Erlang type language provides a few predefined types,
most of which are refinements over the runtime representation-
based classification of terms. These types are shown in Table [I]
grouped by term category.

The type language also defines a number of other built-in
types, such as boolean() for ’true’ | ’false’, binary()
for <<_:_x8>>, and string() for [0..16#10FFFF], i.e. a list of
Unicode characters. Improper lists, i.e. lists where the tail of a cons
cell is a non-list value, are supported by the type language, but are
of little practical use, therefore we will not consider them for the
rest of this paper (although PropEr handles them properly).

Integers mathematical integers
I only a specific integer I, e.g. 42 (singleton type)
L. .H integers between L and H
integer () all integers

Floats floating point numbers
float () all floats

Atoms named constants, e.g. *hello’, *World’
A only a specific atom (singleton type)
atom() the set of all atoms

Bitstrings untyped series of bits, e.g. <<8:4,1:4>> (<<129:8>>)
<<>> only the empty bitstring (singleton type)
<<_:_*xU>> bitstrings whose size is a multiple of U, U € IN
<<_: BxU>> bitstrings whose size is B X U

Pids handles for communicating with other Erlang processes
pid() all process identifiers

Ports handles for communicating with external programs
port () all ports

References identifiers that are unique within a runtime environment
reference () all references

Funs callable function objects, e.g. fun(X) -> X + 42 end
fun((...) -> R) functions that return values of type R
fun((71,...,Tn) -> R) functions that accept N arguments

of types 71, . .., T'n and return values of type R
Tuples compound terms with a fixed number of elements, e.g.

{0,7f00’,3.14, ’bar’ ,<<42>>}, {’answer’ ,42}
tuple() all tuples
{T1,...,Tn} tuples of N elements, of types T4,..., TN
Lists compound terms with a variable number of elements, not
necessarily of the same type, e.g. [42,’answer’]
[1 only the empty list (singleton type)
[T7] lists with elements of type T'
[T, ...] non-empty lists with elements of type T’
Special types that do not correspond to a specific term category
any () all Erlang terms (top type)
none () no terms (bottom type)
Ty | Ts | | T all the terms represented by at least
one of 71,75, ..., TN (union type)

-module(a) .

A% time() is local: we can refer to it using just its name

4% bar() is remote: it must be exported from its defining

%% module and the module name must be used when referring to it
-type foo() :: {time(),b:bar()}.

% simple type:
-type time() :: {0..23,0..59,0..59}.

%% recursive type:
-type tree() :: ’leaf’ | {’node’,integer(),tree(),tree()}.

A% mutually recursive types:

-type do() :: ’do’ | {’do’,re()}.
-type re() :: ’re’ | {’re’,mi()}.
—type mi() :: ’mi’ | {’mi’,do(}.

%

-module(b) .
-export_type([bar/0]) .

-type bar() :: integer() | #rec{}.

%% record declaration:
-record(rec, {a, b =12, ¢ :: atom(), d = 3.1 :: float()}).
4% parametric type:
-type kvlist(K,V) :: [{K,V}].

%% parametric, recursive type:

-type tree(T) :: ’leaf’ | {’node’,T,tree(T),tree(T)}.

Table 1. Built-in types of Erlang

2.2 User-defined Types

Users can define their own, custom types using type declarations.
Listing [I] shows some examples. The basic syntax of a custom
type is similar to that of a function call: tname (T'V1,..., TVyN)
where the T'V;’s are types or type variables. The definition of such
a type must be provided in the right hand side (RHS) of its type
declaration and can be any valid type expression.

Inside their defining module, user-defined types may appear in
any type expression, even in the RHS of their own declaration.
Types defined in other modules, also known as remote types, can
only be used if they have been exported from their defining module
using an export_type declaration. Such types can then be refer-
enced by using their module qualified type name (e.g., the type
b:bar () in Listing[I).

Custom types can be used as aliases for other type expres-
sions. Additionally, custom types can be parametric, allowing for
the reuse of a structure specification with various different element
types. Finally, recursive types can be expressed using type dec-
larations where the name of the type appears in the RHS of the
declaration, or even through mutually recursive declarations.

Erlang also allows users to define record data types, which be-
have like tuples with named fields. Records may optionally be
typed, by providing a type declaration for one or more of their
fields. In Erlang, however, records are not really a separate data
type, since they are converted to tuples at compile time. Records

Listing 1. Examples of type declarations

may be referenced inside any type expression in their defining mod-
ule using the notation: #rec{}. Such references may optionally re-
fine the types of some fields. For example, #rec{a :: atom()}
further refines the types of the record declaration in Listing

2.3 Function Specifications

A function specification (or contract) is a way for the programmer
to explicitly state the intended uses of a function. Contracts are
declared using spec attributes and follow the syntax:

., ATy) -> RT.

where ATh,...,ATn and RT can be any type expression allowed
in the context of the current module.

Erlang functions are often designed to operate on different
data types in an overloaded fashion. In order to accurately capture
this behaviour, the type language allows for overloaded contracts.
These are specified as a sequence of simple contracts (referred to
as contract clauses) separated by semicolons, as below:

-spec fname (AT, ..

-spec pnt(pos_integer(), pos_integer()) -> pos_integer();
(pos_integer(), neg_integer()) -> neg_integer();
(neg_integer(), pos_integer()) -> neg_integer();
(neg_integer(), neg_integer()) -> pos_integer().

Another feature of the contract language is support for para-
metric polymorphism. Type variables can be used in contracts to
specify relations among the input arguments and with the return
value, as in this specification of the 1ists:map/2 function:

-spec map(fun((T) -> S), [T]) -> [S].

By default, type variables are universally quantified, i.e. they can
be instantiated to any Erlang type (even singleton types). Users can
constrain the types that a variable is allowed to represent by adding

a guard-like subtype constraints to the contract, thus achieving
bounded quantification as in the following example:

-spec af(X,Y) -> {X,Y} when X::atom(), Y::float().

Some functions in Erlang are not meant to return. For example,
they may define servers which are supposed to run infinitely or
may simply be functions that only throw exceptions. Such functions
should be specified as returning the special none () type or its alias
no_return().

3. Property-Based Testing

The process of testing a piece of code can be conceptually divided
into three steps:

1. Acquire a valid input.

2. Run the code on that input and capture any output.

3. Decide if the input-output pair conforms to the code’s intended
behaviour.

The second step of this process can nowadays be fully automated
(e.g., by using a unit testing framework like EUnit [2]). Various
approaches have been suggested for solving the third step, most of
which involve defining some sort of specification for the code under
test. In many cases, programmers are required to provide a full,
formal specification of their code, whose size is often comparable
to that of the original program. The first step, how to efficiently
generate valid inputs representative of a program’s domain, has also
been studied [8]. However, most conventional testing tools leave it
upon programmers to come up with test inputs for their code.

Property-based testing (PBT) is a novel approach to software
testing, where the tester only needs to specify the generic structure
of valid inputs to the program under test, along with a number
of properties (regarding the program’s behaviour and the input-
output relation) which are expected to hold for every valid input. A
PBT tool, when supplied with this information, will automatically
produce progressively more complex random valid inputs, then
apply those inputs to the program while monitoring its execution,
to test that it behaves as expected. By following this methodology,
a tester’s manual tasks are reduced to correctly specifying the
program’s input format and formulating a set of properties that
accurately describe its intended behaviour.

PBT tools operate on properties, which are essentially partial
specifications of the program under test, meaning that they are more
compact and easy to write and understand than full specifications.
Users can make full use of the host language when writing prop-
erties, and thus can accurately describe a wide variety of input-
output relations. They may also write their own test data generators,
should they require greater control over the input generation pro-
cess. Compared to testing code with manually-written test cases,
testing with properties is a faster and less mundane process. The
resulting properties are also much more concise than a long series
of test cases, but, if used properly, can accomplish a more thorough
testing of the program, by subjecting it to a much greater variety of
inputs than any human tester would be willing to write. Moreover,
properties can serve as a checkable partial specification of a pro-
gram, one that is considerably more general than any set of instan-
tiated test cases, and thus one that is much better at documenting
the behaviour of the program.

Because test inputs are generated randomly, the part of a fail-
ing test case that is actually responsible for the failure can eas-
ily become lost inside a lot of irrelevant data. A PBT tool of-
ten aids the programmer in extracting that part by simplifying the
counterexample, through an automated process called shrinking. In
most cases, shrinking works in the same way as a human tester,
by consecutively removing parts of the failing input until no more
can be removed without making the test pass. This “minimal” test

case will serve as a good starting point for the debugging process.
The shrinking process can often be fine-tuned through user-defined
shrinking strategies.

The first implementation of a PBT tool was QuickCheck for
Haskell [3], a combinator library designed for testing pure func-
tions. Since this pioneering work, QuickCheck-like tools have been
developed for a variety of other languages. Erlang versions include
Quviq QuickCheck [1]], a proprietary closed-source tool marketed
as a commercial product, Triq [9], which was written by Kresten
Krab Thorup and released as open-source software, and our own
implementation, PropEr.

3.1 Testing Process
A test run of a single property typically follows this workflow:

1. Randomly generate valid instances for each universally quan-
tified variable in the property, using the generator that the user
has provided for each such variable.

2. Call the property code with this input.

3. If the property evaluated to ’true’ without throwing an excep-
tion, repeat from 1. Else:

4. While it is possible to shrink the test case to one that is simpler
and fails the property in the same way, shrink it.

5. Report the failing test case and the shrinked input to the user.

In PBT tools, this process can typically be configured in various
ways through options. For example, users can control the maximum
number of tests to run, the size of produced inputs, the maximum
number of shrinking attempts, etc. Failing test cases, i.e. the values
of the universally quantified variables that caused the property to
fail, can be saved and re-applied to the same property, allowing
users to easily check if they have successfully fixed the problem.

To better illustrate this process, we provide an example: Sup-
pose that we want to test our implementation of a delete function
for lists (Listing[2), which should take a term X and a list L and re-
turn a copy of L with all occurrences of X removed. We translate this
specification into the following property: “For any pair of values X
and L, where X is an integer and L a list of integers, delete (X,L)
must not contain any element matching X”.

-module (mylists) .
-export([delete/2]).
-include_lib("proper/include/proper.hrl") .

delete(X, L) ->
delete(X, L, [1).

delete(_, [], Acc) —>
lists:reverse(Acc) ;

delete(X, [X|Rest], Acc) —>
lists:reverse(Acc) ++ Rest;

delete(X, [Y|Rest], Acc) —>
delete(X, Rest, [Yl|Accl).

prop_delete_removes_every_x() ->
?FORALL({X,L}, {integer(),list(integer())},
not lists:member (X, delete(X,L))).

Listing 2. Example of source code with PropEr tests

Listing [3| shows how this property is checked using PropEr. We
can see that PropEr managed to find an error in our implementation.
Judging from the format of the result, it seems that lists containing
two (or more) instances of the element which is to be deleted are
not handled correctly. Indeed, upon careful inspection it becomes
apparent that our code only deletes the first occurrence of this
element from the input list. The code and the property are not in
agreement and one of them should better be changed.

2> proper:quickcheck(mylists:prop_delete_removes_every_x()).
]
Failed: After 42 test(s).
{-4,[6,-22,8,-4,46,1,-13,-4,56,-22,-10,50,
-149,6,-7,-3,-20,17,22,1,-32,28,-37,0]1}
Shrinking (8 time(s))
{-4,[-4,-41}

false

Listing 3. Testing a property on the Erlang shell using PropEr

3.2 Property Declaration

In PropEr, properties are written using Erlang expressions, with the
help of a few predefined macros. Expressions used as properties
are expected to evaluate to ’true’ on success, and either evalu-
ate to >false’ or throw an exception on failure. More complex
properties can be composed by wrapping such an expression with a
property wrapper. A commonly used property wrapper is PFORALL:

?PFORALL(Xs, XsGen, Prop): The Xs argument should only
contain variables, optionally contained in arbitrarily nested lists
and/or tuples. The XsGen argument must then contain a PropEr
generator (Section[d) that will produce a value of the same structure
as that of Xs. All the variables inside Xs can (and should) be
present as free variables inside the wrapped property Prop. When
a PFORALL wrapper is encountered, a random instance of XsGen
is produced and each variable in Xs is replaced inside Prop by its
corresponding value.

PropEr comes with a variety of helper wrappers, which can be
used for such purposes as declaring preconditions for the produced
instances, setting a timeout for the code under test, combining many
properties into one, collecting statistics on the randomly produced
instances, attaching debug output to property code, working with
code that spawns processes and configuring the testing process [7].

4. PropEr and its Internals

In this section, we present some internals of PropEr in detail.
PropEr’s interface is mostly compatible with other PBT tools for
Erlang, but also closer to Erlang’s type language.

The input domain of functions is specified through the use of a
set of custom generators. Each PropEr generator specifies how the
following three operations are performed:

Instance generation Given a generator, run it to randomly pro-
duce a valid instance. At the start of every testing run, PropEr pro-
duces only small instances of generators in ?FORALLs, but grad-
ually increases their complexity as tests pass. To accomplish this,
PropEr uses a global size parameter, which starts at one and in-
creases by one with each successful test. Its purpose is to control
the maximum size of produced instances: the actual size of a pro-
duced instance is chosen randomly, but can never exceed the value
of the size parameter at the moment of generation. The actual size
of a term is measured differently for each data type, e.g. the actual
size of a list could be defined as the sum of sizes of all its elements
+ 1, while the actual size of a tree could be defined as the number
of its internal nodes.

Instance checking Given a term and a generator, decide if the
term is a valid instance of the generator. This operation is used
when shrinking instances of generators in a 7FORALL that contains
nested PFORALLs. In this case, the generator declarations in the
nested ?FORALLs may depend on the instances generated for the
containing ?FORALL, therefore we need to ensure that the old in-
stances for the nested generators are still valid.

Shrinking Given a term and its generator, produce (perhaps
lazily) all’| the simpler instances of the generator which can be
derived from this particular term.

4.1 Built-in Generators

Let’s see a brief overview of the basic generators of PropEr:

integer(L,H) generates integers between L and H; either bound
can be set to ’inf’, in which case it represents —oo or 400
respectively.

float(L,H) generates floats between L and H either bound can be
set to ’inf’, in which case it represents —oo or +o0o respec-
tively.

atom() generates all atoms.

bitstring(B,U) generates bitstrings of size B x U; B can be set to
’any’ to indicate a bistring of arbitrary size.

function(N,G) generates pure functions of arity N that return
values which are instances of G.

{G1,...,Gn} generates tuples of N elements which are in-
stances of G1,...,GN.

loose_tuple(G) generates tuples of any size, whose elements are
all instances of G.

list(G) generates lists with elements that are instances of G.

vector(Len,G) generates lists of length Len, whose elements are
all instances of G.

[G1,...,GnN] generates lists of exactly N elements, instances of
Gi,...,GnN.

any() generates all Erlang terms.

weighted_union([{w1,G1}.... {wn,Gn}]) generates the terms
which are instances of at least one of G1, . .., G n; the weights
w1, ..., wn are used when deciding whichone of G1,...,Gxn
to use: choices with greater weights are more likely to be cho-
sen.

(literal term) always generates that specific integer, float, atom or
bitstring literal; counts as a singleton type that represents only
that particular term.

The instance checking algorithm for built-in generators follows
directly from these definitions. One exception is function(N,G):
it is normally impossible to verify that every value returned by a
function is an instance of a certain generator, simply because the
domain of most non-trivial functions is infinite. For this reason,
PropEr tags every function it produces with its range generator, and
uses this information when instance checking.

Table [2| demonstrates how PropEr will attempt to shrink an
instance of each built-in generator.

In addition to the information presented above, we note the
following:

e We have omitted pids, ports and references from the PropEr
generators, because these data types normally serve as identi-
fiers to application-specific resources, therefore there is no point
in producing random ones for testing.

e The language of PropEr’s generators is compatible with Er-
lang’s type language, with the exception of shorthand [77]
for 1ist (7"), which has a different meaning in PropEr. This
is because we wanted to make the generator language more

! For efficiency, we relax this requirement a little when shrinking instances
of variable-length terms, such as lists. In particular, we never try to shorten
such an instance by removing two or more non-contiguous parts at once.

Term generated from To get a simpler instance. . .

integer(L,H) take an integer closer to 0
float(L,H) take a float closer to 0.0
atom() drop some characters
bitstring(B,U) drop some bits, or convert some 1’s to 0’s
function(N,G) take a function that returns simpler values
{G:1,...,Gn} simplify some elements
loose_tuple(G) drop or simplify some elements
list(G) drop or simplify some elements
vector(Len,G) simplify some elements
[Gi,...,GN] simplify some elements
any() (depends on the instance)
take an instance of some generator closer
weighted_union(...) to the head of the list, or simplify the se-
lected instance according to its generator
(literal term) (doesn’t shrink)

Table 2. Built-in PropEr generators’ shrinking strategies

expressive than the type language in this case. Specifically,
we allow users to specify lists of length N, using the syntax
[G1,...,GnN]. Therefore, generator [G] will always produce
lists with exactly one element (an instance of G), while the
type [17] represents lists of arbitrary length. Specifying lists
of a given length is not possible in the type language.

e PropEr also defines a few generator aliases like integer() or
boolean(), that correspond to standard Erlang types, and a few
compatibility generators for interoperability with other PBT
tools.

Because instances of a weighted_union shrink towards the first
choice, users should write the simplest case first in weighted
unions. A weighted_union([{k,G1}....,{k,Gn}]) generator
whose every choice has the same weight k£ will be denoted
simply as union([G1, ..., Gn]).

4.2 User-defined Generators

Users can define their own, custom generators as functions. Like
the Erlang type language, the PropEr generator language allows
users to define aliases for commonly used expressions, e.g.

day() -> union(['mo’,'tu’,'we’,'th’,"fr’,’sa’,'su’]).
parametric generators, e.g.
kvlist(K,V) -> list({K,V}).

and, as we will soon see, recursive generators. Programmers can
also define customized generators, using macros like the following:

?LET(Parts, PartsGen, In) This macro allows users to de-
fine dependent generators. The Parts argument should only con-
tain variables, optionally contained in arbitrarily nested lists and/or
tuples. The PartsGen argument must then contain a PropEr gener-
ator that will produce a value of the same structure as that of Parts.
All the variables inside Parts can (and should) be present as free
variables inside the wrapped expression In.

In order to produce an instance, PropEr generates a random
instance of PartsGen, matches it with Parts and replaces all
variables inside In with their corresponding values. In is allowed
to evaluate to a generator, in which case an instance of the inner
generator is generated recursively; this allows for nested ?LETs.

To be able to instance check and shrink instances of 7LETSs,
we need to save the generated instance of PartsGen along with
the final value, since that information may be partially lost when
applied to In. Consider, for example, instances produced by

?LET({X, Y}, {integer(17,21),integer(23,54)}, X+Y).
If all we knew about an instance of this was its final value, e.g.
42, we would have no way of knowing what values of X and Y
were used to produce it. In fact, in the general case we would be
unable to determine if that value could have ever been produced by
some instance of PartsGen. For this reason, instances of ?LETs are
saved in an intermediate form: {’$used’ ,PartsValue,Value}.
To shrink an instance of a ?LET, we first shrink each of the
Parts and re-apply them to In. When this is finished, we move
on to shrinking the Value. If In evaluates to a generator, we need
to check that the old Value is a valid instance of the new generator
of In. This is done, as with ?FORALLs, through instance checking.

?SUCHTHAT (X, Gen, Condition) This macro produces a spe-
cialization of Gen, which includes only those terms that satisfy
the constraint Condition, i.e. those terms for which the function
fun(X) -> Condition end returns ’true’. Currently, PropEr
performs no constraint satisfaction analysis; instead, it produces
instances of Gen randomly until it finds a valid one. Any shrunk
instance of a specialized generator must also satisfy the constraint,
else it is rejected. A typical example of the use of 7SUCHTHAT is the
non_empty wrapper:

non_empty(T) -> ?SUCHTHAT(L, T, L =/= [1).

By wrapping a list generator with this wrapper, we ensure that the
empty list will never be produced.

4.3 Recursive Generators

Without the integration of Erlang type declarations and PropEr gen-
erators that we will present in Section 3] if users need to work with
recursive data types, they have to manually guide their generation
process. It is the user’s responsibility to:

e provide a base case;

ensure that generation always terminates;

place all recursive cases in a weighted_union;

add a fallback to the base case as the first choice;

calculate the weights for the recursive choices, to ensure a
satisfactory average size of produced instances;

e add laziness to ensure efficient generation;

e define a shrinking strategy.

In addition, to ensure that the generation of a recursive data type
always terminates, users must handle the value of size manually:
they have to write a recursive generator function that accepts (at
least) a Size parameter, which should be distributed among all
recursive calls of each recursion path. The base case should be
provided in a separate clause for Size = 0. PropEr needs to be
told how to apply the value of size to this generator, through the
use of a 7SIZED macro. To accomplish all the above, testers need
to use the following macros and operators:

?SIZED(Size, Gen) Constructs a new generator from a sized
generator Gen (i.e., a generator that handles size directly). To
produce instances of this generator, PropEr will apply the cur-
rent value of size to the function fun(Size) -> Gen end.

resize(NewSize, Gen) This declaration instructs PropEr to use
NewSize instead of the size value to produce instances of Gen.

?LETSHRINK (Parts, PartsGen, In) This construct is equiva-
lent to a simple 7LET, but Parts can only be a list of vari-
ables. When shrinking an instance of this generator, the parts
that were combined to produce it are first tried in place of the
failing instance, before proceeding with normal ?LET shrink-
ing strategies. This can result in much more effective shrinking,
therefore users are advised to always use PLETSHRINK when
combining recursively generated values.

tree() —>
?SIZED(Size, tree(Size)).

tree(0) ->
’leaf’;
tree(Size) —>
weighted_union([
{1, 7LAZY(tree(0))},
{5, 7LAZY(?LETSHRINK([L,R],
[tree(Size div 2),tree(Size div 2)],
{node,integer(),L,R}))}1).

Listing 4. Example of a PropEr recursive generator

?LAZY (Gen) This construct delays the execution of Gen until the
generated value is actually needed. Users should wrap each re-
cursive choice with a ?LAZY macro, or else PropEr will prema-
turely generate an instance for each alternative, when only one
will eventually be used. Because this process will be repeated
recursively for each choice, the total generation time can be ex-
ponential on the size of the produced instance. Conversely, by
making proper use of 7LAZY we can achieve linear generation
time.

For an example of what the user would need to write to obtain a
recursive generator see Listing[d where we provide a generator for
the tree () type declaration of Listing|[T}

5. Integrating PropEr with the Type Language

PropEr was designed from the ground up to be properly integrated
with Erlang’s type language, a feature currently unique among PBT
tools for Erlang. Before delving into the technical aspects of this
integration, we briefly examine the motivation behind the creation
of a PBT tool that can work with type information directly:

e While the language of generators is richer that the language of
types, it is often the case that a user-written generator is almost
completely equivalent with the type declaration for the same
data structure. In these cases, a type-aware PBT tool can save
considerable programmer effort.

e Using types as generators helps to reduce code redundancy: the
type declaration becomes the single point of specification for
datatypes, so programmers do not have an extra set of places in
their code (the generators) to update every time a type changes.

e The burden of writing generators for recursive data structures is
lifted, because the tool can extract all the required information
from the corresponding type declaration.

e Adding type declarations to Erlang programs becomes more
valuable and users do not need to learn a new type specification
language to start testing with properties

e Function signatures, being essentially a form of lightweight
specification, can be leveraged to provide simple properties for
free. Programmers now have one more reason to make their
specs more descriptive.

As hinted above, there are two kinds of type information that
we can utilize for PropEr testing:

e type declarations, which can be used to derive generators for
the data structures they represent, and

e function specifications, which can be converted into simple
properties

2 In pursuit of the same goal, we have also strived to keep PropEr’s API as
similar as possible to the Erlang type language.

Erlang Type

L.H integer(L,H)
integer() integer('inf’,'inf")
non neg-integer() integer(0,'inf")
pos_integer() integer(1,’inf")
neg_integer() integer('inf’,-1)

PropEr Generator

float() float('inf’,'inf")
<<_:_*U>> bitstring('any’,U)
<<_:BxU>> bitstring(B,U)
pidO) —
port() —

reference() —
fan((...) -> R) ?LET (N, integer(0,255),

function(N, R"))
fun((Th,...,Tn) -> R) function(N,R’)

tuple() loose_tuple(any())
{ThaTN} {Gélv7 SV}
[T]1 list(G')
[T,...] non_empty(list(G’'))
none() —
Ty | To | ... | Tn union([G],Gs,...,GN])

Table 3. Conversion table from built-in Erlang types to PropEr
generators. Types that have the same representation (e.g. atom())
in both languages have been omitted. G’ stands for the PropEr
equivalent of the Erlang type T'; similarly for R’ and R.

Let us see the first component: a type-to-generator converter.

5.1 Converting Non-recursive Types

Converting built-in Erlang types to PropEr generators is a straight-
forward process: we just follow the conversion formula outlined in
Table 3] Note that the types pid (), port () and reference() do
not have any equivalent generators in PropEr, for reasons explained
in Section 411

Non-recursive user-defined types are also relatively easy to han-
dle: we simply recurse into their type structure. If the type is
parametric, we also need to apply the actual parameters to it. For
module-local types, we can simply replace every instance of a vari-
able in the definition with its corresponding value, on a syntactic
level. In the case of remote types, we also need to mark the value
of each parameter with its originating module, because parameters
are considered to be in the scope of the referring module, and may
therefore contain references to types which are local to that module.

5.2 Converting Recursive Types

PropEr can also handle self-recursive and mutually recursive types.
However, the method used to convert such types is much more
complicated than the one for non-recursive types.

To make the presentation easier to follow, we are going to
ignore some constructs of the Erlang type language that do not
add any significant complexity to the procedure. Specifically, we
will be ignoring funs (which can be treated similarly to lists),
records (which can be treated like user-defined types) and para-
metric user-defined types (which can be treated exactly like non-
parametric types, after instantiating them with their actual param-
eters). We will only use types that are all declared in the same
module, but in the actual implementation we also allow recur-
sion paths to span multiple modules. Among the remaining built-
in Erlang types, only {T%,...,Tn}, [77, [T,...1and T} |
... | T require special handling; the rest can be converted us-
ing the simple procedure of Section[5.1} We will be referring to the
latter collectively as simple types.

-type nat() non_neg_integer()

{’+’, nat(), natQ}

{’if’, cond(), nat(), nat()}
{’from_bits’, bits()}.

{’=’, nat(), nat(Q}

{’=?, real(), real()}.

-type real() :: {’from_nat’, nat()}

{’+’, real(), real()}.

-type bits() :: {’from_nat’, nat()}
{’concat’, [bits() | nat()]1}.

-type cond() ::

nat() :: non_neg_integer()
| {°+’, nat(), natO}
| {if’,
{’=, nat(Q), natO} | {*=?, real(), realQ},
nat(), nat()}
| {’from_bits’, bits(Q}.
real() :: {’from_nat’, nat()} | {°+’, real(), real()}.
bits() :: {’from_nat’, nat(O} | {’concat’, [mat() | bits(Ol}.

Listing 5. Type declarations as given by the user

oy
=Y/ Ny
>

Figure 1. Initial dependency graph

Given a set of mutually recursive type declarations, we can
sketch the dependencies among the types using a directed graph.
In such a graph, nodes represent types and edges represent depen-
dencies between types: there exists an edge from node a () to node
b() if and only if the definition of type a() contains a reference
to type b(). This graph may contain self-loops, which represent
direct self-recursion. We can elect a particular type (normally, the
one we wish to translate) as the root, and view the graph as a tree.
Back-edges on that tree will then represent indirect recursion paths.

To help illustrate each step of the translation process, we will
be using the type nat (), declared in Listing [5| as a running ex-
ample (this type was adapted from a specification for valid syntax
expressions in some programming language). Figure [T] depicts the
dependency graph for the types declared in the listing.

5.2.1 Detect Recursion

The first issue we need to solve is detecting when the type we
are processing is recursive. To achieve this, we augment the type
translation algorithm of Section [5.1] with a fype stack, where we
record the names of user-defined types as we recurse into them. If
at some point we come across a reference to a type that is present
in the stack, we know we are dealing with a recursive type.

In our example, it becomes immediately obvious that nat () is a
recursive type: a self-reference is encountered in the second clause
of the top union.

5.2.2 Inline Type Definitions

Before we start the actual translation process, we run the recursive
type declaration through a pre-processing step designed to mini-
mize the number of mutually recursive types that need to be han-
dled, and thus reduce the length of recursive generator call chains.

During this phase, we repeatedly replace type references inside
the recursive type’s structure with their definitions, being careful
not to inline references to the type we are currently working on,
or to other self-recursive types (if we did, the process would never
terminate). To decide if a type is safe to inline, we test whether
doing so and continuing with the process would result in a new
reference to the type appearing in the resulting sub-expression. The
inlining process is then applied recursively to all the remaining
types of the recursive type’s declaration. When processing such

Listing 6. Types after inlining cond ()

oy
e ey

Figure 2. Dependency graph after inlining

an internal type, we need to keep track of all the types we have
recursed into so far, to avoid inlining them in the declaration.

If we re-sketch the type dependency graph at this point, we will
notice that any node which did not have a self-loop or a back-edge
pointing to it has been removed. Every one of the remaining types
will be handled separately in the following steps, and each will
produce at least one recursive generator.

Listing [6] and Figure 2] show the state of our running example
after the end of the inlining phase. As these types are now internal
to PropEr, we henceforth omit the -type attribute from the listings.

5.2.3 Push Unions to the Top-level

At this point, we rewrite each type declaration in a special form that
will allow us to translate it efficiently.

In the following, we will use the term r-union to refer to a union
expression that contains at least one reference to a user-defined
type. We also define the following kinds of type expressions:

kind A contains no references to user-defined types

kind B contains at least one reference to a user-defined type, but
no r-unions

kind C' contains exactly one r-union, on the top-level

Union expressions are used heavily in recursive type declara-
tions, as a way to separate the base case(s) from the recursive
case(s). Therefore, most recursive type declarations will contain
r-unions. However, if an r-union is present in any point of a re-
cursive type declaration other than the top-level, we can no longer
be certain about the number of sub-instances that are going to be
used during generation, and thus it becomes much harder to set up
an efficient shrinking strategy and control the size of produced in-
stances. The following type is a good example of this:

t() :: {’node’, t() | ’null’, t() | ’null’}.

For this reason, we devote a step to transforming every type decla-
ration to an equivalent one that has at most one r-union, necessarily
on the top-level, i.e. one that is of kind B or C. Type expressions that
satisfy this condition are said to be in normal form. The aforemen-
tioned transformation essentially involves pushing all the r-unions
of a type declaration to its top-level.

We present our normalization algorithm in Table[d] In this table,
the sub-expressions of each input are named according to their
kind; sub-expressions of type A are named A; etc. The entries for
tuples, lists and unions should be read as follows: Whenever we
encounter such a type expression, we first normalize all its sub-

Result

Input
Expression Kind
T;imple ﬂimple A
my_type () my_type () B
{A1, Az, As} {A1, Az, As} A
{A1, B2, A3} {A1, B2, A3} B

{A1,C24,B3,Csa}

{A1, (C2a|C2p|Cac), | {A1,Coa, B3, Can}

Bs, (C4a|Cus)} | {41, Ca, Bs, Csa} ¢
|
[A1] [A1] A
[B1] [B1] B
[Cia | C1b] [helper ()] B
Ai | As | As Ai | As | As A
A1|Bz|A3 Al'BQ‘AS C
A1 | (C2q|Ca) | B3 A1 | Caq | Cop | Bs C

Table 4. How to push r-unions to the top-level of recursive types

expressions, then decide based on the table how we should combine
them. As can be seen from the last column of the table, every type
expression produced by the algorithm will be of kind A, B or C,
so the following three cases are sufficient to cover every possible
combination of sub-expressions (after they have been normalized):

o All sub-expressions are of kind A.
e At least one sub-expression is of kind B, but none is of kind C.

e At least one sub-expression is of kind C.

We provide a representative example of how we handle each of
these cases, in the context of lists, tuples and unions (non-empty
lists can be handled exactly like normal lists). The third rule for
lists introduces a new helper type, which is defined as follows:

helper() :: Cia|Crs.

and is already in normal form.

It can easily be concluded that pushing all the r-unions of a type
to its top-level does not alter its meaning. However, it does alter the
union structure that the programmer had specified, which we intend
to use as a guide when assigning probabilities to the recursive cases
of the final generator. For example, take the last line of Table [4]
According to the initial form of the type, choices A1, Caq, Cop
and Bs should be assigned probabilities 1/3, 1/6, 1/6 and 1/3
respectively. After normalizing the whole union, however, the same
method would assign an equal probability of 1/4 to all four choices.
To counter this effect, we annotate the r-unions on the top-level of
kind C' expressions with weights, which we update in accordance
with the type’s structure changes. These weights will be used later,
when constructing the corresponding recursive generators.

Listing [7] and Figure [3] show what our abstract expressions
example look like after the end of the normalization phase.

5.2.4 Find Base Cases

On this step, we detect the base case(s) of each recursive type
declaration. At the start of the process, each type declaration is
processed separately. Suppose we are trying to extract the base case
of some type a(), whose definition is a type expression of kind C'
(@if it is of kind B, we simply treat it as we would a union with
one choice). We take each of the top-level union’s clauses and run
it through the function described in Table [5] (unions found inside
the type expression require no further processing, because every r-
union has already been pushed to the top-level, therefore all internal
unions contain no custom type references).

nat() :: non_neg_integer()2

{’+’, nat(), natQO}s

{’if’, {°=’,nat(),nat()}, nat(), natO}h

{’if’, {°=?,real(),real(0}, nat(), natO}
{’from_bits’, bitsO}o.

real() :: {’from_nat’, nat()}; | {°+’, real(), real()};.
bits() :: {’from_nat’, nat()}; | {’concat’, [bits_helper()]};.
bits_helper() :: nat()1 | bits(Q;1.

Listing 7. Types after union pushing, with weight annotations

Figure 3. Dependency graph after union pushing

Type be(Type)
ﬂimp]c 71simplc

a0 (ABORT)

b() b0

{Tl,. oo ,TN} {bC(Tl),. o0 ,bC(TN)}

[T1] (
(T,...] [be(T),....]
Tunion Tuninn

Table 5. How to extract a base case (function bc) from some clause
of the top-level union of type a ()

If the function fails on all the clauses, then we are certain that
a() does not have a base case, so the whole translation process
terminates with an error. Otherwise, we collect all the clauses for
which the bc function returned a result and categorize them based
on whether the corresponding result contains a reference to some
other type or not. The former are characterized as conditional base
case clauses, while the latter as clear. If a() has at least one clear
base case clause, we keep only the clear clauses and mark a () as an
independent type. Otherwise, we mark a() as a reliant type. The
intuition behind these names is that types in the second category
do not have a base case themselves; instead they fall back to some
other type.

At this point, we consider our set of recursive type declarations
as a whole. Our goal is to ensure that every type has a well-defined
base case, even if it can only be reached indirectly. If every type has
been marked as independent, then they all have at least one clear
base case, and the above condition is trivially satisfied. Otherwise,
we have to verify that for every reliant type in the set, every possible
series of clause choices is guaranteed to terminate. Consider, for
example, the following types:

-type foo() :: bar().
-type bar() :: foo() | baz().
-type baz() ’ok’ | {’boo’, baz()}.

Of these types, baz() is independent (it has a clear base case,
’ok’), foo() is reliant (it has a single, conditional base case
clause, bar()) and bar () is also reliant (it has two conditional
base case clauses, foo() and baz()). If we keep both conditional
clauses of bar (), then foo () and bar () will not have well-defined

base cases: we can keep selecting the clause foo () when process-
ing bar () and the clause bar () when processing foo (), thus cre-
ating an infinite loop. The problem, however, can easily be solved,
by removing the first of bar ()’s base case clauses.

In conclusion, we need to find a subset of each reliant type’s
base case clauses for which no reference cycles are created. (Of
course, we must leave at least one clause per reliant type.) This
problem can be restated as a graph problem, and solved as such.

The types from our running example have the following base
cases:

nat () : non_neg_integer ()
real() : {’fromnat’, nat()}
bits() : {’concat’, [1}
bits_helper() : nat() and bits()

Thus, types nat () and bits() are independent, while real () and
bits_helper() are reliant. In this particular example, we can keep
all the base case clauses of the two reliant types.

5.2.5 Prepare the Recursive Calls

On this step, we convert type references to generator calls.

Each top-level clause of each type in our set of recursive type
declarations is processed separately. Given the type expression of
some clause, we first identify and enumerate all the type references
it contains. At this point, we do not treat self-references differently
from other references, and we consider a list that contains multiple
references (e.g., this one: [{a() ,b() }1), as a single reference. Let
k be the total number of references contained in the clause.

Each reference is then converted into a call to the corresponding
sized generator, with the size parameter equal to a 1/k-fraction
of a parameter S (this parameter will be bound at a later time).
A special case arises when k = 1 and the single reference is
a back-edge or self-loop. In that case, we have to call the sized
generator for size equal to S — 1, to ensure the termination of
the generation process. Additionally, references contained in lists
have to be translated somewhat differently, e.g. the sub-expression
[a2()] would be converted to resize(.S div k, list(a())). Notice that
we do not use the sized generator in this case.

As an example of this procedure, consider the type declara-
tions of Listing [/} The second ’if’ clause of nat() contains
four type references, all of which would be converted to genera-
tor calls at size S div 4. The ’concat’ clause of bits() con-
tains a single list of reference-containing elements, which would
be converted to resize(S, list(bits_helper())). The nat () clause
of bits_helper () contains a single reference, which also happens
to be a back-edge, so it will be converted into a call to the nat/1
generator at size S — 1.

5.2.6 Determine Shrinking Behaviour

It is often the case with recursive types that recursively produced
instances are simply combined using tuples (the type declarations
in Listing [7]are a good example of this). In these cases, instead of
generating the sub-instances as we build the tuple, we can first gen-
erate them all and then combine them into a tuple. The two idioms
will produce essentially the same end result, but the second one al-
lows the use of 7ZLETSHRINK, which can significantly improve the
effectiveness of the shrinking process. The same technique can be
applied to recursive clauses that contain lists of self-references: we
simply pre-produce a list of sub-instances.

5.2.7 Compose a Generator

In the final step of the translation process, we compose all the
pieces we have created so far into a recursive generator. For each
type in our set of recursive type declarations, we do the following:

1. Set up a sized generator with two clauses, one for size =0 and
one for size =5 > 0.

2. Fill in the 0-size clause with a union of all base case clauses
assigned to the type, after replacing any type references inside
those clauses with calls to the corresponding sized generators at
size =0.

3. Fill in the S-size clause with a weighted_union containing all of
the type’s clauses, and set the weights according to the top-level
r-union’s weights.

4. Add a base case fallback clause (a self-call with size = 0) to the
head of the S-size weighted_union, and recalculate the weights
of all clauses to achieve the desired fallback probability.

5. Wrap each weighted_union with a ?LAZY wrapper.

6. Convert the non-recursive parts of the type declarations using
the method described in Section[3.1]

7. Add a no-size generator for the type, created by wrapping the
sized generator with a 7SIZED macro.

Listing [8] shows the final output of our abstract expressions
example. We assume that the user has specified a 1/5 base case
fallback probability.

5.3 Integration with PropEr Notation

The type-to-generator converter is not enough. We also need to
provide a way for testers to write properties using Erlang types.
To make this process as intuitive as possible, we decided to allow
the use of Erlang types anywhere a PropEr generator would be
expected, i.e. inside both property declarations and user-defined
generators. In particular, if PropEr detects that some part of a
generator expression does not correspond to a valid generator,
but would constitute a legal Erlang type, it will assume that the
expression represents an Erlang type and use the method illustrated
in the previous sections to convert it. See Listing[9] for an example
of the use of Erlang types in properties.

The use of Erlang types in modules containing properties is
subject to the following rules:

e Any local user-defined Erlang type may be used, as long as it
is not shadowed by a local or imported function (or an auto-
imported Built-In Function) of the same name and arity.

e Any remote Erlang type may be used, as long as it is exported
from its defining module and not shadowed by some function
of the same name and arity, exported from the same module.

e Types and generators can be combined in arbitrarily nested lists
and/or tuples.

e All other constructs of the Erlang type language, such as the
union operator ’ | >, are not allowed, because they are rejected
by the Erlang parser.

e The parameters of an Erlang type can only be other types.

e The parameters of PropEr generators and the arguments of
PropEr constructors like 7LET can include both Erlang types
and PropEr generators.

e If an expression can be interpreted both as a PropEr generator
and as an Erlang type, the former takes precedence. This may
cause some confusion when list syntax is used (cf. Section[4.T).

To implement this behaviour, we need to write a component that
locates all the “call” structuresE]in a module and decide for each one

3A call is a syntactic entity of the form name(...) (a local call) or
mod:name(...) (a remote call), which can either be a function call or a
reference to a type.

nat() ->
?SIZED(Size, nat(Size)).

nat(0) ->
non_neg_integer() ;
nat(S) ->
weighted_union([
{2, 7LAZY(nat(0))},
{2, 7LAZY(non_neg_integer())},
{2, 7LAZY(7LETSHRINK([X,Y], vector(2,nat(S div 2)),
{+, X, Y,
{1, 7LAZY(?LETSHRINK([X,Y,Z,W], vector(4,nat(S div 4)),
Lifr, =2, X, Y}, Z, WD},
{1, ?LAZY(7LETSHRINK([X,Y], vector(2,nat(S div 4)),
{’if’, {’=’, real(S div 4),real(S div 4)},
X, Y1),
{2, 7LAZY({’from_bits’,from_bits(S)})}]).

real() —>
?SIZED(Size, real(Size)).

real(0) —>
{’from_nat’,nat(0)};
real(S) —>
weighted_union([
{2, 7LAZY(real(0))},
{3, 7LAZY({’from_nat’,nat(S-1)})},
{3, 7LAZY(7LETSHRINK([X,Y], vector(2,real(S div 2)),
0+, X, YINI.

bits() ->
7SIZED(Size, bits(Size)).

bits(0) ->
{’concat’, [1};
bits(S) ->
weighted_union([
{2, 7LAZY(bits(0))},
{3, 7LAZY({’from_nat’,nat(S-1)})},
{3, 7LAZY({’concat’,resize(S,list(bits_helper()))})}1).

bits_helper() —->
7SIZED(Size, nat(Size)).

bits_helper(0) ->
union([nat(0), bits(0)]);
bits_helper(S) ->
weighted_union([{2, 7LAZY(bits_helper(0))},
{3, 7LAZY(nat(S-1))},
{3, 7LAZY(bits(S-1))3}1).

%% Inside myprops.erl:

prop_new_array_handles_any_opt_combination() —->
?FORALL(Opts, array:array_opts(),
array:is_array(array:new(Opts))) .

%% Inside array.erl:

-type array_opt() :: ’fixed’ | non_neg_integer()
| {°default’, term()} | {’fixed’, boolean()}
| {’size’, non_neg_integer()}.

-type array_opts() :: array_opt() | [array_opt()].

Listing 8. The final generator

of them whether it refers to a function (i.e., a PropEr generator)
or an Erlang type. Calls to PropEr generators are left unchanged,
while references to Erlang types are replaced by calls to the type
conversion subsystem.

For local calls, this decision can be made safely at compile time.
Because we have access to the code of the module, we can easily
check which one of the following cases is true for each local call:

e There exists a function in scope of that name and arity, therefore
the call represents a PropEr generator.

e There exists a locally-defined Erlang type of that name and
arity which it is not shadowed by any similar function in scope,
therefore the call represents an Erlang type.

e Neither a function nor a type with that name and arity exists in
the current scope, therefore the call is an error.

Listing 9. Example of the use of Erlang types in properties: Veri-
fying that array:new/0 can handle any combination of options.

The above method cannot be applied to remote types, because
Erlang modules are not linked until runtime, therefore it is possible
that the referenced remote modules will not be present during
compilation. Instead, we have to delay the processing of remote
calls until runtime. When such a call is encountered during testing,
PropEr first tries to find an exported function with the correct
signature. Only if this fails will PropEr search the —export_type
declarations of the remote module for a type that matches the
original remote call.

A little extra work is required when handling remote calls with
one or more arguments. If at least one of them cannot possibly be
interpreted as an Erlang type, then the remote call must surely be a
function call (we do not allow PropEr generators as parameters to
Erlang types). If, instead, some argument cannot be interpreted as
a PropEr generator, but only as an Erlang type, then we process it
as such. The problem arises when an argument can be interpreted
in both ways. In this case we have to keep two representations of
the argument, one as a normal value and one as a type expression,
because we do not know which one will eventually be used.

We implemented these operations as part of a parse trans-
form which is applied automatically to any module that includes
PropEr’s header file.

5.4 Automatic Function Specification Testing

Having described the type translation scheme, we are ready to turn
our attention to the other component of the Erlang type language,
function signatures. Function signatures (or specs) are essentially a
form of lightweight specification. A spec of the form:

-spec foo(Ay,...,An) -> R.

can be interpreted as: “function foo/N, if called with arguments
of types A1, ..., Ax and returns some value, then that value will
be of type R”. It should be easy, then, to convert such descrip-
tions into testable properties, and thus provide a method for testing
functions automatically. Our implementation of such a system can
test an exported function against its spec by calling it with increas-
ingly complex valid inputs (as specified in the spec’s domain) and
checking that no unexpected value (according to the spec’s range)
is returned. We will describe these steps in detail (each clause of a
multi-clause spec is treated like a separate contract).

5.4.1 Generate Valid Inputs

To produce valid inputs for the function under test, we simply ex-
tract the domain type from its spec, convert it to PropEr’s genera-
tor format and pass it to the random instance generator. Some extra
work is required for specs that contain variables, as the type trans-
lator can only work with fully instantiated types. On each testing
run, every type variable present inside the spec is instantiated to

increasingly broader types, taking care to remain inside the limits
enforced by any subtype constraints.

5.4.2 Check the Return Value

If the function under test returns normally for a random input, we
need to check that the returned value is in accordance with the
function’s spec. Essentially, we need to write a component for
instance checking terms against Erlang types. The algorithm used
by such a component can easily be derived from the description
of the type language given in Section [2| with only a few cases
requiring special attention:

e Record expressions are expanded into tuple types. Each field’s
type, if not overridden in the reference, is copied from the
record’s original definition.

References to user-defined types (either local or remote) are
expanded using the corresponding type definitions. If a user-
defined type is parametric, we first replace every variable in its
definition with the value of the corresponding actual parameter.
In the case of parametric remote types, we also need to anno-
tate the parameters with their originating module, for reasons
explained in Section[5.1}

Recursing into a type structure generally requires that we con-
sume some bit of the input term. For example, in order to re-
curse into a tuple we have to consume the tuple structure en-
casing the elements. Therefore, since Erlang terms are of finite
size, the instance checking process is guaranteed to terminate.

Unions and references to user-defined types are an exception to
the previous rule. The incorrect use of these types in recursive
type declarations has the potential to create an infinite loop
in our instance checker. The problem arises when a recursive
type contains at least one recursion path of just unions and type
references, like in these (non-sensical) type declarations:

-type a() atom() | aQ).
-type b() float() | cQ).
-type c() :: integer() | b().
-type d(T) :: T | d({’bar’, T}).

By keeping a recursion stack, we are able to detect such decla-
rations and stop the process early.

It is impossible, in the general case, to fully test the domain
of funs, simply because in most cases it is infinite. Therefore,
we can do little to verify that returned funs abide by their
specification beyond checking their arity.

Abnormal function returns also need to be classified. However,
the Erlang type language in its current form lacks a standard way
of specifying exceptional function behaviour. Thus, in our effort to
avoid false positives, we are currently forced to accept any thrown
exception as a normal return, as long as it does not signify a system
error (we also accept badarg errors, which are commonly used to
signify an illegal input).

6. Practical Experiences

In this section, we briefly comment on the effectiveness of PropEr
as a type-aware PBT tool and an automatic function tester. We base
our analysis both on our own experience and on feedback we have
received from PropEr’s users.

6.1 Sources of Feedback

In an effort to assess the usefulness of PropEr’s type language
integration component, we have tried PropEr on various open-
source code bases that contain sufficient type information. The

most significant of these code bases was Erlang/OTP’s standard
library. The bugs that PropEr’s spec tester uncovered on this code
were mostly errors in specs:

e The specs for functions filename: join/1, gb_sets:inter-
section/1 and ordsets:intersection/1 incorrectly stated
that they could also accept the empty list.

e The specs for lists:merge/1 and lists:umerge/1 read
([T]) -> [T] instead of the correct ([[T1]) -> [TI.

e The spec for orddict:filter/2 stated that the predicate
used to filter the dictionary could return any (), whereas only
boolean() is actually acceptable.

Although at the time of this writing PropEr has not been prop-
erly released yet, various open-source Erlang projects (e.g. riak, hi-
bari and mochiweb), and even big companies, are already adopting
it as their PBT framework of choice. Support for PropEr was re-
cently added to the popular Erlang project management tool rebar.
On our part, we are actively working towards expanding our user
base, and have remained in close communication with most of our
users, who have supplied us with a good amount of feedback, in the
form of bug reports, patches and suggestions.

6.2 Observations

From the feedback we received on PropEr’s integration with the
type language, we were able to make the following observations:

e The Erlang type language cannot always accurately express the
characteristics of data structures. For example, users cannot
specify that a certain binary should represent valid UTF-8 char-
acter sequences, or that some list should always have exactly
k elements, or an even number of elements. In such cases, the
user has to manually write appropriate generators, something
which is of course possible in PropEr.

Function specs cannot express dependencies that might exist
between different arguments of a function. Good examples of
this are the 1lists:nth/2 function whose first argument is a
positive integer less or equal to the length of the list in its second
argument, or the 1ists:zip/2 function whose documentation
states that it only accepts two lists of the same length. However,
the closest a spec can get to specifying the actual behaviour of
this function is: zip ([T], [S]) -> {T,S}, which also allows
for lists of different lengths. Even if a function accepts all com-
binations of arguments, it is likely that independently generated
arguments will mostly exercise a subset of all possible use cases
of the function. For example, suppose we independently gener-
ate two arguments for the function 1ists:delete/2: a term X
and a list L. It is very unlikely that X will happen to be a member
of L, therefore a big part of the function’s behaviour will not be
tested adequately by values generated in that manner.

Despite the previous points, Erlang’s type language may well
be adequate for accurately describing the input domains of
functions. As a testament to this, the developers of mochiweb
were able to make full use of PropEr as a spec tester in a module
for numeric calculations, where specs were total.

When using PropEr as a spec tester, users must be careful not
to underspecify their function’s domains, because doing so may
cause PropEr to run the function with illegal inputs. A common
case of overapproximating a function’s domain are specs for
functions which can only process non-empty lists of some type
T, stating that the function accepts arguments of type [7']
instead of the correct [T, ...]. The use of the any () type in
function specifications is also often an overapproximation.

e Function signatures are a rather simple form of specification:
they cannot be expected to discover subtle errors, nor can
they be used to test (among others) inter-functional proper-
ties. Therefore, at their current form, specs cannot replace user-
written properties.

After taking these and other observations into account, some
parts of our first iteration of PropEr had to change. The most
important one of them was that in order to help users overcome
the limitations of Erlang’s type language, we had to make our type
integration component more customizable. Users can now mark
function specs as untestable, or provide their own generators for
datatypes that cannot be fully specified using types.

6.3 Lessons Learned and Some Advice

Through our interaction with PropEr’s users, we have gained a
greater understanding of how programmers go about using PBT
tools, and which aspects of PBT are the most difficult for program-
mers to understand.

e Switching from testing with unit tests to testing with properties
is often a challenge for programmers, because PBT requires a
completely different mindset. New users often find it hard to
come up with interesting properties to test, and sometimes have
trouble expressing them properly. A significant part of their
time is spent debugging the properties rather than the code.

Writing generators, especially recursive ones, often requires
considerable time and effort. New users find it hard to make
efficient use of the generator primitives, and to express their
generators in a declarative manner. In this respect, PropEr im-
proves significantly over other existing PBT tools for Erlang.

Users are generally not familiar with the intricacies of Erlang’s
type language, and have a hard time tightening their specs, to
allow for the efficient use of spec testing.

The list syntax discrepancy between the Erlang type language
and PropEr’s generator language has been a source of confusion
in some cases.

Based on what we have learned, we have these pieces of advice
to give to (new) users of PropEr; some apply to PBT in general.

e Users should start with the functional core of their application,
which is usually much easier to test than the front-end, and is
often amendable to spec testing.

Testing the full functionality of your program using a single
property is not a good idea. Instead, one should test many,
smaller, partial properties with various kinds of inputs. Such
properties are surprisingly effective at uncovering bugs, and are
easier to get right than full specifications.

Properties should be written for readability. Each property
should be viewed as a way of documenting a specific aspect
of the code. Property and variable names should be descriptive
and the input generators should be as declarative as possible.

Generators for recursive datatypes are hard to get right and
PropEr’s automatically produced generators often are enough.

e When trying to tightly spec your code, make use of Dia-
lyzer’s -Wunderspecs option, which warns about specs that
are strictly more allowing than the success typing inferred for
that function.

Slight alterations to the syntax of type declarations can make
them better suited to their role as term generators:

= Putting the simplest cases first in unions achieves better
shrinking performance.

= Sometimes, adding redundant clauses to unions improves
the distribution of produced instances. For example, con-
sider the following type declaration for compiler attributes:
’type’ | ’spec’ | atom(). Although this declaration
is semantically equivalent to just atom(), it will result in
a specialized generator which produces the more “interest-
ing” compiler attributes ’type’ and ’spec’ 66.6% of the
time.

e When a type declaration (or a simple generator) is almost suf-
ficient to fully specify the structure of some data type (in the
sense that only a small fraction of the produced values are not
valid instances of the datatype), a simple use of a ?SUCHTHAT
macro to reject the invalid values is preferable to writing a more
complex generator.

e Type variables in function specs that express relations between
arguments and results allow PropEr to test those functions more
effectively.

7. Concluding Remarks

We have presented PropEr, a property-based testing tool that is
tightly integrated with the Erlang type language. We have described
the approach we took in providing such an integration, which
consists of a system for the conversion of types to term generators,
an extension to the language of properties and generators that
allows the use of types in place of generators, and a component that
can test functions automatically based solely on their signatures.
We focused particularly on the conversion algorithm for recursive
types, which was the main technical challenge of this work.

Based on the feedback we have received from PropEr’s users,
as well as the results of our own experimentation with the tool,
it is clear that our approach currently suffers from expressivity
limitations of the Erlang type language. We plan to explore possible
solutions to these issues, which will probably involve extensions to
the Erlang type language, as we continue our work on PropEr.

References

[1] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing Telecoms
Software with Quviq QuickCheck. In Proceedings of the 2006 ACM
SIGPLAN Workshop on Erlang, pages 2—10. ACM, 2006.

[2] R. Carlsson and M. Rémond. EUnit: A Lightweight Unit Testing
Framework for Erlang. In Proceedings of the 2006 ACM SIGPLAN
Workshop on Erlang, pages 1-1, New York, NY, USA, 2006. ACM.

[3] K. Claessen and J. Hughes. QuickCheck: a Lightweight Tool for Ran-
dom Testing of Haskell Programs. In Proceedings of the 5th ACM SIG-
PLAN International Conference on Functional Programming, pages
268-279. ACM, 2000.

[4] EDoc. User’s Guide, 2011. http://www.erlang.org/doc/apps/
edoc/users_guide.html.

[5] M. Jimenez, T. Lindahl, and K. Sagonas. A Language for Specifying
Type Contracts in Erlang and its Interaction with Success Typings. In
Proceedings of the 2007 SIGPLAN Workshop on Erlang, pages 11-17.
ACM, 2007.

[6] T. Lindahl and K. Sagonas. Practical Type Inference Based on Success
Typings. In Proceedings of the S8th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming,
pages 167-178. ACM, 2006.

[7] PropEr. Property-based testing for Erlang, 2011. http://proper.
softlab.ntua.gr/.

[8] J. Rushby. Automated Test Generation and Verified Software. In
B. Meyer and J. Woodcock, editors, Verified Software: Theories, Tools,
Experiments, volume 4171 of Lecture Notes in Computer Science,
pages 161-172. Springer, Berlin / Heidelberg, 2008.

[9] K. K. Thorup. Triq: Trifork QuickCheck, 2011.
krestenkrab.github.com/triq/.

http://

http://www.erlang.org/doc/apps/edoc/users_guide.html
http://www.erlang.org/doc/apps/edoc/users_guide.html
http://proper.softlab.ntua.gr/
http://proper.softlab.ntua.gr/
http://krestenkrab.github.com/triq/
http://krestenkrab.github.com/triq/

	Introduction
	The Erlang Type Language
	Built-in Types
	User-defined Types
	Function Specifications

	Property-Based Testing
	Testing Process
	Property Declaration

	PropEr and its Internals
	Built-in Generators
	User-defined Generators
	Recursive Generators

	Integrating PropEr with the Type Language
	Converting Non-recursive Types
	Converting Recursive Types
	Detect Recursion
	Inline Type Definitions
	Push Unions to the Top-level
	Find Base Cases
	Prepare the Recursive Calls
	Determine Shrinking Behaviour
	Compose a Generator

	Integration with PropEr Notation
	Automatic Function Specification Testing
	Generate Valid Inputs
	Check the Return Value

	Practical Experiences
	Sources of Feedback
	Observations
	Lessons Learned and Some Advice

	Concluding Remarks
	References

