
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Αυτόματος Τυαίος Έεος Ιδιοτήτν
Συναρτήσεν από τις Προδιαραφές τους

Διπματική Ερασία
του

Εμμανουή Παπαδάκη

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εραστήριο Τενοοίας Λοισμικού
Αήνα, Οκτώριος 2010

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Τενοοίας Λοισμικού

Αυτόματος Τυαίος Έεος Ιδιοτήτν
Συναρτήσεν από τις Προδιαραφές τους

Διπματική Ερασία
του

Εμμανουή Παπαδάκη

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 22η Οκτρίου, 2010.

........................
Κστής Σαώνας Νικόαος Παπασπύρου Κώστας Κοντοιάννης

Αν. Καηητής Ε.Μ.Π. Επικ. Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Μ.Π.

Αήνα, Οκτώριος 2010

...
Εμμανουή Παπαδάκης
Διπματούος Ηεκτροόος Μηανικός και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright © – All rights reserved Εμμανουή Παπαδάκης, 2010.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού
Μετσόιου Πουτενείου.

Περίηψη

Τα τεευταία ρόνια, όο και περισσότεροι προραμματιστές της ώσσας Erlang ρησιμο-
ποιούν εραεία εέου άσει ιδιοτήτν ια τον έεο τν προραμμάτν τους. Σήμερα,
τέτοια εραεία έουν εάιστη σύνδεση με το σύστημα τύπν της ώσσας. Σε αυτή τη
Διπματική Ερασία, διερευνούμε ορισμένους τρόπους ια την ενσμάτση στοιείν του
συστήματος τύπν της Erlang σε ένα τέτοιο εραείο. Συκεκριμένα, περιράφουμε πώς
ένα τέτοιο εραείο α μπορούσε να ρησιμοποιήσει τις δηώσεις τύπν διάφορν τύπν
δεδομένν προκειμένου να παράει αυτόματα τις αντίστοιες εννήτριες, πώς α πρέπει να
αντιμετπίσει αφηρημένους τύπους δεδομένν με κρυφή εστερική αναπαράσταση, και επίσης
πώς α μπορούσε να ρησιμοποιήσει την πηροφορία που περιέεται στην υποραφή μίας
συνάρτησης προκειμένου να την εέξει αυτόματα. Έουμε αναπτύξει ένα πρτότυπο ενός
τέτοιου συστήματος, το οποίο ονομάσαμε PropEr. Από δοκιμές του PropEr ς εραείο
αυτόματου εέου συναρτήσεν ίνεται φανερό ότι, ενώ ένα τέτοιο σύστημα είναι οπσ-
δήποτε σε έση να εντοπίσει σφάματα οισμικού, η προσέισή μας παρουσιάζει ορισμένα
εενή προήματα, τα οποία αφήνουμε ς μεοντική ερασία.

Λέξεις Κειδιά

έεος οισμικού άσει ιδιοτήτν, αυτόματος έεος οισμικού, τυαίος έεος ο-
ισμικού, προδιαραφές συναρτήσεν, παραή εέν οισμικού άσει τεκμηρίσης

5

Abstract

Property-based testing tools have recently become quite popular among Erlang developers.
Such tools currently have little connection with the type system of the language. In this
thesis, we explore some possible ways of integrating elements of the language’s type system
into a property-based testing tool. Specifically, we describe how such a tool could utilize
type declarations to produce the corresponding term generators automatically, how it
should handle abstract data types with hidden representations, and also how it could use
the type information contained in the signature of a function to test it automatically. We
have developed a prototype for such a system, called PropEr. Tests from using PropEr
as an automatic function tester show that, while such a system is definitely capable of
finding errors in programs, our approach suffers from some key limitations, which we leave
as future work.

Keywords

property-based testing, automated testing, random testing, function specifications, deriv-
ing tests from documentation

7

Ευαριστίες

Θα ήεα κατ’ αράς να ευαριστήσ τον επιέποντα καηητή μου Κστή Σαώνα ια
την καοδήησή του κατά την εκπόνηση της παρούσας ερασίας. Η ερατικότητα και ο
ενουσιασμός του αποτέεσαν και αποτεούν έμπνευση ια μένα.

Ευαριστώ τους καηητές μου Νίκο Παπασπύρου, Στάη Ζάο, Άρη Παουρτζή και Κώστα
Κοντοιάννη, που με μύησαν στα μυστικά της Πηροφορικής.

Ευαριστώ όα τα παιδιά του Εραστηρίου Λοισμικού, που με οήησαν, ο καένας με τον
τρόπο του, σε κάε ήμα της διαδικασίας.

Τέος, ευαριστώ την οικοένειά μου ια την κατανόηση και την υποστήριξή τους όα αυτά
τα ρόνια.

Παπαδάκης Εμμανουή

9

Contents

Περίηψη 5

Abstract 7

Ευαριστίες 9

Contents 12

List of Tables 13

List of Listings 15

1 Introduction 17

2 The Erlang Language and Type System 19
2.1 The Erlang Language . 19
2.2 Adding a Type System . 20

2.2.1 Past Efforts . 20
2.2.2 The Dialyzer Tool . 20
2.2.3 Creating a Type System . 21

2.3 The Erlang Type System . 21
2.3.1 Built-in Types . 21
2.3.2 User-Defined Types . 24
2.3.3 Function Specifications . 24
2.3.4 Opaque Types . 27

3 Property-Based Testing and PropEr 29
3.1 Software Testing . 29

3.1.1 Unit Testing . 29
3.1.2 Property-Based Testing . 30
3.1.3 The Need for Shrinking . 30
3.1.4 Implementations . 32

3.2 Our Implementation: PropEr . 32
3.2.1 PropEr Workflow . 32
3.2.2 Writing Properties . 33
3.2.3 The PropEr Type System . 33
3.2.4 Recursive Generators . 39
3.2.5 Symbolic Instances . 39

4 Utilizing Types in Testing 43

11

12 Contents

4.1 Motivation . 43
4.2 Converting Types to Generators . 44

4.2.1 Simple Types . 44
4.2.2 Recursive Types . 44

4.3 Integration with PropEr Notation . 52
4.4 Handling Opaque Datatypes . 55

4.4.1 Identifying Useful API Functions . 55
4.4.2 Constructing a Symbolic Generator 57

4.5 Automatic Spec Testing . 59
4.5.1 Generating Valid Inputs . 59
4.5.2 Checking the Return Value . 59

5 Practical Evaluation 61
5.1 Context . 61
5.2 Self-Testing . 61

5.2.1 Results Summary . 61
5.2.2 Conclusions . 62

5.3 Standard Library Testing . 62
5.3.1 Results Summary . 62
5.3.2 Conclusions . 63

6 Related Work 65
6.1 Oracle Generation . 65
6.2 Test Data Generation . 66
6.3 Test Set Adequacy Evaluation . 69

7 Conclusion 73
7.1 Concluding Remarks . 73
7.2 Future Work . 73

Bibliography 75

List of Tables

2.1 Categories of Erlang terms . 22
2.2 Built-in Erlang types . 23

3.1 Basic PropEr types . 36
3.2 Basic PropEr types’ shrinking strategies . 37
3.3 List syntax differences . 38

4.1 Built-in Erlang types to PropEr types . 45
4.2 API functions’ return type search strategy 56
4.3 Description of custom match specifications 56
4.4 Choice distinguishability criteria in unions 57

13

List of Listings

2.1 Example of an Erlang record declaration . 24
2.2 Examples of type declarations, module ‘a’ 25
2.3 Examples of type declarations, module ‘b’ 25
2.4 ADT example: simple implementation of a stack 28
3.1 Property-based testing vs. xUnit: code under test 31
3.2 Property-based testing vs. xUnit: testing results 31
3.3 Examples of properties . 34
3.4 Output from example properties . 34
3.5 Example of a PropEr recursive type declaration 40
3.6 Stack generator and sample property . 41
4.1 Parameter substitution example, module ‘a’ 44
4.2 Parameter substitution example, module ‘b’ 45
4.3 Example: instance-accepting recursion path 51
4.4 Example: non-instance-accepting recursion path 51
4.5 Example: list-instance-accepting recursion path 52
4.6 Example: mutual recursion . 53
4.7 Example of a module that won’t compile without a parse transform 54
4.8 Inferred type specification for symbolic stack instances, with examples . . . 58

15

Chapter 1

Introduction

For a long time, users of the Erlang programming language had no practical way of in-
cluding type information in their code. This recently changed, with the addition of a
standard type annotation language, which programmers can use to write type signatures
for their functions. Programmers are encouraged to do so, due primarily to the usefulness
of function signatures as program documentation, but also because static analysis tools
like Dialyzer can utilize them to improve their error detection rate. The use of this type
language has been steadily increasing ever since its introduction.
Recent years have also seen a rise in the popularity of property-based testing tools within
the Erlang community. Programmers can use such tools to test their programs by provid-
ing properties which are expected to hold on every execution. The tool itself, then, tries
to falsify these properties through a series of random tests. Each testable property must
be accompanied by a specification of the terms for which it should hold (this specification
provides a guide for the random generation of tests). To write such a specification, pro-
grammers need to use a custom type annotation language, which usually overlaps with
Erlang’s type language in many respects.
As part of this thesis, we have explored ways of integrating Erlang’s type annotation lan-
guage with a property-based testing tool. By providing users with one such tool that can
work with Erlang type specifications directly, we effectively make it easier for programmers
to start using these tools, while adding more value to the presence of type information in
user code. We have also examined ways of using type signatures to test functions auto-
matically, a feature which would add even more value to function specifications, further
encouraging programmers to invest time in writing them. Such a system could also be em-
ployed as a complementary tool to static analyzers in the process of verifying the accuracy
of user-provided specifications.
In order to test our ideas, we required a property-based testing tool to use as a base.
To ensure maximum flexibility, we decided to implement such a tool from scratch instead
of working with an existing one; we named that tool PropEr (PROPerty-based testing
tool for ERlang). PropEr was then extended with the addition of a compatibility layer,
which allowed the use of Erlang type expressions in properties. This was followed by a
component that automatically produces generators for abstract data types based on their
API, and, finally, a component that tests functions automatically based on their specs.
PropEr’s aptitude as an automatic spec testing tool was measured by applying it to various
modules of the Erlang standard library, and also on itself. We observed that, while this

17

18 Chapter 1. Introduction

component is clearly capable of detecting faults, it is inherently limited in its applicability
and requires further extensions before it can be used in the general case.

Outline of the Thesis

The rest of this thesis is organized as follows: Chapter 2 gives an introduction of the
Erlang language and describes its type system in detail. Chapter 3 describes property-
based testing and introduces the PropEr tool. This is followed by the main chapter of the
thesis, Chapter 4, where we present the extensions we have made to PropEr in order to
make it compatible with Erlang’s type system, and introduce a system for the automatic
testing of function specs. In Chapter 5 we report on our experiences from using PropEr’s
automatic spec tester on some code bases. Finally, Chapter 6 gives an overview of related
work and Chapter 7 concludes.

Chapter 2

The Erlang Language and Type
System

2.1 The Erlang Language

Developed within Ericsson’s research labs in the 1980’s, Erlang is a programming lan-
guage designed for writing embedded control software for telecommunications systems,
where high availability is a major requirement. As such, Erlang was built from the ground
up to facilitate the development of scalable and robust non-stop, soft real-time systems
[6, 5]. Features like fault-tolerance, lightweight concurrency, efficient distribution and
communication, even on-the-fly code reloading, most often an afterthought to language
designers, were considered of vital importance. Aiming to provide all these, the mak-
ers of Erlang made two major design decisions. First, Erlang was chosen to be a strict,
dynamically-typed functional language, sacrificing the better runtime efficiency of imper-
ative languages for the compactness and clarity of side-effects-free code. Second, Erlang
differs from most other concurrent programming languages in that it implements the ac-
tor concurrency model: Erlang processes can only communicate with one another through
asynchronous message-passing, making it much easier to program and debug concurrent
applications.
As mentioned above, Erlang is a dynamically typed language, meaning that no kind of
type annotation is required in the source code and the compiler performs very little type-
checking during the compilation process. Instead, all values are tagged with type informa-
tion at runtime, allowing the Erlang runtime system to detect and prevent the improper
use of a function or language operator, thus providing type safety. This system is a good
fit for Erlang’s typical uses, i.e. telecom applications, where servers (implemented as pro-
cesses) are often expected to gracefully handle all incoming messages, even invalid ones,
and therefore benefit from untyped routines and communication channels. Moreover, not
having to conform to a static type system allows for greater expressiveness and flexibility
(polymorphism can be taken to the extreme), and may help to speed up development.
This freedom, however, comes with a price. No type checking means that programmers get
very little feedback from the compiler. Instead, they have to actually test their program
to uncover even the most trivial of errors (e.g. typos), errors that any static type system
would have easily detected. In addition, programmers that aren’t forced to spell out
their intention to the compiler can easily end up writing convoluted code that’s hard for

19

20 Chapter 2. The Erlang Language and Type System

other people to understand. Even if a programmer wished to clearly define a function’s
behaviour, until recently she couldn’t easily document it, since there was no standard type
annotation system.

2.2 Adding a Type System

2.2.1 Past Efforts

Over the years, a number of solutions to the shortcomings of Erlang’s dynamic type system
have been proposed. Marlow and Wadler developed a type system based on subtyping [67],
which never caught on with Erlang developers, because it essentially tried to impose on
them a programming style more suited to statically-typed programming languages. More
recently, Nyström introduced a soft type system [75], which only covered a subset of the
language and was hard to use in practice. The EDoc documentation tool [1] is also worth
mentioning, since it allows programmers to specify the interface to their functions through
signatures written in a custom type notation language. These signatures, however, are
never checked against the code (they are really just comments) and are thus susceptible
to code rot.

2.2.2 The Dialyzer Tool

In 2004, Lindahl and Sagonas presented a tool called Dialyzer (DIscrepancy AnaLYZer
for ERlang programs) [61], that used static analysis methods to detect various kinds of
software defects in Erlang code. Dialyzer was fast, easy to use, imposed no restrictions on
function use, required no user guidance at all and proved to be quite effective in practice.
Most importantly, Dialyzer was sound for defect detection: it only reported provable
type errors, i.e. code points that would definitely raise an exception due to a type clash.
While it made no guarantees on its error detection rate, its lack of false positives made
it very appealing to programmers. From that point on, Dialyzer has seen increasing use
in the Erlang community, eventually becoming part of the official Erlang distribution,
Erlang/OTP, in 2007.

Inferring Success Typings

Traditional type systems, in their effort to prove type safety, often have to restrict the use
of functions. Therefore, such type systems will often reject perfectly reasonable programs.
The function signatures that they infer only allow those inputs for which the function
is guaranteed to evaluate without type errors. At its core, Dialyzer, too, functions like a
type inferencer, by deducing the implicit type information which exists in Erlang programs
[63]. Dialyzer, however, doesn’t aim to prove type safety (this is already guaranteed by
the implementation of the Erlang language), but locate definite type errors. Its purpose
is essentially to capture the biggest set of terms for which it can be proven that type
clashes will occur. The type signatures that Dialyzer infers, called “success typings”, are
the complement of that set of terms. Success typings are an over-approximation to the
set of terms for which a function can evaluate: the domain of the signature includes all
possible values that the function could accept as parameters, and its range includes all

2.3 The Erlang Type System 21

possible return values for this domain. Success typings are guaranteed to capture all
intended uses of a function, along, perhaps, with some erroneous ones. Thus, any use of a
function that is incompatible with its success typing will definitely fail. In effect, success
typings approach the type inference problem from a direction opposite to that of type
systems for statically typed languages.

2.2.3 Creating a Type System

Dialyzer’s creators soon realized that success typings could also be used as program docu-
mentation, since they will never fail to capture some possible use of a function [62]. Their
next tool, TypEr, was a fully automatic type annotator which utilized Dialyzer’s inference
engine to reconstruct a significant portion of the type information implicit in an Erlang
program. That way, TypEr provided users with automatic documentation that would
evolve together with the program and would not rot.

It was obvious, however, that inferred success typings, being over-approximations, could
often be greatly refined through user intervention. Thus, a specification language for
Erlang was designed [49], one that would allow user-provided function contracts, both as
a means of documenting a function’s intended use and as extra information for Dialyzer
to work with. This addition largely solved Erlang’s documentation problem, because
type signatures expressed in this type system were verifiable, and therefore much less
susceptible to code rot. Nowadays, most of Erlang/OTP’s libraries, as well as many open
source applications written in Erlang, come with type contracts for functions, especially
those which are part of the public API.

2.3 The Erlang Type System

The Erlang type system was designed to be compatible with the language’s dynamic
semantics. For that reason, it could not be modeled after the traditional unification-based
Hindley-Milner type systems, but had to be based on unrestricted subtyping. Its makers
also placed more importance on intuitiveness, readability and simplicity than on expressive
power. The Erlang type system was also influenced from EDoc’s type notation language.

In this section, we describe the Erlang type system in detail.

2.3.1 Built-in Types

In Erlang, a piece of data of any kind is called a term. Based on its runtime representation,
a term will belong to exactly one1 of the categories outlined in Table 2.1. Types can be
used to describe sets of Erlang terms, both bounded and infinite. A few predefined types
are provided (see Table 2.2), most of which are refinements over the representation-based
classification of terms. In addition to the information presented in Tables 2.1 and 2.2, we
note the following:

1Note, however, that binaries are also bitstrings and, correspondingly, bitstrings of a size divisible by 8 are
also binaries.

22 Chapter 2. The Erlang Language and Type System

Category Description Examples
Integer A mathematical integer −31, 0, 17, 42
Float A floating point number −0.123, 3.14
Atom A named constant hello, ‘World’
Binary An untyped series of bytes 255,0,98, 42
Bitstring An untyped series of bits 99,3:2, 1:1,0:1, 4

Pid A handle for talking to an Erlang process –
Port A handle for talking to an external program –

Reference A term unique within a runtime environment –

Fun A callable function object fun(X) → X + 1 end,
fun lists:reverse/1

Tuple A compound term with {0,alabama,3.14},
a fixed number of elements {answer,42}

List A compound term with a variable number of [1,2,3], [42,answer],
elements (not necessarily of the same type) [for,whom,the,bell,tolls]

Table 2.1: Categories of Erlang terms

• Erlang treats characters as simple integers instead of defining a separate character
data type.

• Strings are represented as lists of characters.

• There is no boolean data type in Erlang. Instead, the atoms ‘true’ and ‘false’ are
used to denote boolean values.

• Erlang also provides a “record” data type, which behaves like a tuple with named
fields. Records, however, are not really a separate data type, since they are converted
to tuples at compile time. A record declaration (see Listing 2.1 for an example) con-
sists of the record’s name (an atom) and zero or more field entries. Each field entry
specifies the field’s name (also an atom) and may contain an initialization expres-
sion and/or a type declaration. If both are present, the initialization value must be
an instance of the field type. Uninitialized fields of newly created records will con-
tain the value ‘undefined’. Records may be referenced inside any type expression in
their defining module using the notation: “#rec{}”. Such references may optionally
(re)define the types of one or more fields, like so: “#rec{a :: atom(), c :: binary()}”.

• The list types mentioned above all refer to “proper” lists, i.e. lists that can be
represented either as the empty list or as the cons of a head element and a (proper)
list tail. Erlang, however, allows the tail of a cons cell to be a non-list value. Lists
constructed this way (called “improper” lists) are of little practical use, therefore we
will ignore them in the rest of the thesis and consider only proper lists.

• To conserve space in Table 2.2, we have omitted some predefined types which are
simply aliases for other types.

2.3 The Erlang Type System 23

Term Group Related Types Represented Terms

Integers

<Int> only a specific integer, <Int> (singleton type)
<Lo>..<Hi> integers between <Lo> and <Hi>

integer() all integers
non_neg_integer() non-negative integers

pos_integer() positive integers
neg_integer() negative integers

Floats float() all floats

Atoms <Atom> only a specific atom, <Atom> (singleton type)
atom() all atoms

Binaries
binary() all binaries

 only the empty binary (singleton type)
_:<Base> binaries of length <Base> (in bytes)

Bitstrings

bitstring() all bitstrings
 only the empty bitstring (singleton type)

_:_*<Unit> bitstrings of length k×<Unit> (in bits)
_:, _:_*<U> bitstrings of length ×<U> (in bits)

Pids pid() all pids
Ports port() all ports

References reference() all references

Funs

fun() all functions
fun((…) → Type) functions of any arity returning Type
fun(() → Type) zero-arity functions returning Type

fun((T1,…,TN) → R) N-arity functions accepting arguments of types
T1,…,TN and returning R

Tuples
tuple() all tuples

{} only the zero-size tuple (singleton type)
{Type1,…,TypeN} tuples of N elements, of types Type1,…,TypeN

Lists
[] only the empty list (singleton type)

[Type] lists with elements of type Type
[Type,…] non-empty lists with elements of type Type

—
any() all Erlang terms
none() no terms (special type)

T1 | T2 | … | TN
the union of all terms represented by T1, T2,
…, or TN

Table 2.2: Built-in Erlang types

24 Chapter 2. The Erlang Language and Type System

� �
1 -record(rec, {a,
2 % no initialization or type declaration
3 % equivalent to a = ‘undefined’ :: any()
4 b = 12,
5 % initialization only
6 % equivalent to b = 12 :: any()
7 c :: integer(),
8 % type declaration only
9 % equivalent to c = ‘undefined’ :: ‘undefined’ | integer()

10 d = 3.1 :: float()}).
11 % both initialization and type declaration� �

Listing 2.1: Example of an Erlang record declaration

2.3.2 User-Defined Types

Using only the predefined types presented above, users can accurately describe most of
the term patterns commonly encountered in Erlang applications. It was decided, however,
to also support user-defined types, since they offer several benefits:

• Type expression reuse: a custom type can serve as an alias for a type expression
that appears often

• Support for parametric types: the same structure specification can be used with
many different element types

• Support for recursive types

Users can define their own, custom types using “-type” declarations (see Listings 2.2
and 2.3). The basic syntax of a custom type is an atom (referred to as the type’s name)
followed by closed parentheses. The definition of such a type must be provided in the RHS
of its “-type” declaration and can be any valid type expression.
Inside their defining module, user-defined types may appear in any type expression, even
in the RHS of their own declaration. Types defined in other modules (also known as
“remote” types) can only be used if they have been exported from their module (using
an “-export_type” declaration). Such types can then be referenced by using their fully
qualified type name (i.e. the type name prepended with ‘module_name:’).
Custom types can be parametric, i.e. they can accept one or more type parameters as
arguments. The declaration of a parametric type is syntactically similar to that of a func-
tion, with type parameters denoted using type variables. Type variables are syntactically
equivalent to Erlang variables (i.e. they start with an uppercase letter or underscore and
may appear in the RHS of the type declaration, anywhere a type would be expected. Note
that a user-defined type cannot override a predefined type of the same name and arity.

2.3.3 Function Specifications

A specification (or contract) is a way for the programmer to explicitly state the intended
uses of functions. Contracts are declared using “-spec” compiler attributes and follow the
syntax:

-spec Function (ArgType1, . . . , ArgTypeN) → RetType.

2.3 The Erlang Type System 25

� �
1 -module(a).
2
3 -type foo() :: [integer() | atom()].
4 -type bar() :: {foo(),b:boo()}.
5 % foo() is local, it needn’t be exported, no module identifier is used
6 % boo() is remote, it must be exported, the module name must be used
7
8 % recursive type
9 -type baz() :: ‘done’ | {‘one_more’,baz()}.

10
11 % mutually recursive types
12 -type do() :: ‘do’ | {‘do’,re()}.
13 -type re() :: ‘re’ | {‘re’,mi()}.
14 -type mi() :: ‘mi’ | {‘mi’,do()}.� �

Listing 2.2: Examples of type declarations, module ‘a’

� �
1 -module(b).
2 -export_type([boo/0]).
3
4 -record(rec, {f :: integer(), g :: atom()}).
5 % exported type
6 -type boo() :: integer() | #rec{}.
7
8 % parametric, recursive type
9 -type tree(T) :: ‘leaf’ | {‘single’,T,tree(T)} | {‘node’,T,tree(T),tree(T)}.� �

Listing 2.3: Examples of type declarations, module ‘b’

26 Chapter 2. The Erlang Language and Type System

where ArgType1, …, ArgTypeN and RetType are type expressions, which may contain
predefined types, record expressions and references to user-defined types, local or remote.
Users can, for documentation purposes, also give names to one or more of the arguments:

-spec Function (ArgName1 :: ArgType1, . . . , ArgNameN :: ArgTypeN) → RetType.

Erlang functions are often designed to operate on different data types in an overloaded fash-
ion. In order to accurately capture this behaviour, contracts are allowed to be overloaded
as well. Overloaded contracts are specified as a sequence of simple contracts (referred to
as “contract clauses”) separated by semicolons:

-spec Function (ArgTypea1, . . . , ArgTypeaN) → RetTypea

; (ArgTypeb1, . . . , ArgTypebN) → RetTypeb.

Currently, the domain types of contract clauses are not allowed to overlap, as in this
example:

-spec wrong (pos_integer()) → pos_integer()
; (integer()) → integer().

Another feature of the contract language is support for parametric polymorphism. Type
variables can be used in contracts to specify relations among the input and output argu-
ments of a function, as in this specification of the ‘filter’ function for lists:

-spec filter (fun ((T) → boolean()) , [T]) → [T] .

By default, type variables are universally quantified, i.e. they count as the type ‘any()’.
Users can constrain the types that a variable is allowed to represent by adding a guard-like
subtype constraint to the contract, thus achieving bounded quantification:

-spec foo (X,Y) → {X,Y } when X :: atom(), Y :: float().

These type variable constraints can also be combined with contract overloading. The
scope of a subtype constraint is the contract clause after which it appears:

-spec tag_number (T) → {‘int’, T} when T :: integer()
; (T) → {‘float’, T} when T :: float().

Some functions in Erlang are not meant to return (e.g. they define servers or they are
used to throw exceptions). Such functions should be specified as returning the special
‘no_return()’ type2.

2Actually, ‘no_return()’ is an alias for the type ‘none()’.

2.3 The Erlang Type System 27

2.3.4 Opaque Types

The Erlang type system provides a special kind of type declaration for opaque data types
[66], i.e. data types whose representation is not supposed to be visible in any way outside
of their defining module. Only functions in the defining module of an opaque data type
are allowed to depend on its term structure. In contrast, external code should never:

• pattern match on the structure of an opaque data type
• compare an opaque term for equality or inequality against another term, opaque

or not (Εven two opaque terms of the same kind cannot be compared for equality.
Α special ‘equals’ function should have been provided for such an operation by the
opaque type’s defining module.)

• inspect the type of an opaque term using type test BIFs3 (e.g. ‘is_atom/1’, ‘is_list/1’,
‘is_tuple/1’)

• apply an opaque term to a BIF which works only for some subset of all terms (e.g.
‘atom_to_list/1’, ‘length/1’, ‘tuple_size/1’, ‘element/2’)

Dialyzer will detect such erroneous uses of an opaque type and report them to the user.

Opaque types are declared using “-opaque” declarations, which are syntactically identical to
normal “-type” declarations. Opaque types don’t make much sense as module-local, since
module-local types are, by definition, inaccessible to other modules. Therefore, opaque
types should always be exported.

Opaque types are mainly useful for representing purely functional abstract data types
(ADTs) with hidden internal representations. Programmers should regard instances of
an ADT as black boxes and handle them only through API functions exported from the
ADT’s defining module. This way, they can be certain that the ADT’s invariants will
always hold and that their code is safe from future changes to the ADT’s representation.
In Erlang, however, the internal representation of a purely functional ADT is simply a
term, which could easily be manipulated in ways that break this convention. Declaring an
ADT as opaque helps detect such illegal uses and enforces the idea of an ADT. For this
reason, most of the ADTs in Erlang’s standard library are nowadays declared as opaque
types.

Listing 2.4 illustrates how an ADT implementation module might look like. The ‘stack’
module presented in this listing contains a list-based implementation of a simple stack
data type. Apart from the usual operations of pushing and popping, this particular im-
plementation supports O(1) calculation of a stack’s size.

3BIF = Built-In Function, a function that is considered part of the Erlang language. BIFs are usually
implemented in C.

28 Chapter 2. The Erlang Language and Type System

� �
1 -module(stack).
2 -export([is_empty/1, size/1, new/0, push/2, pop/1, safe_pop/1]).
3 -export_type([stack/1]).
4
5 -opaque stack(T) :: {non_neg_integer(),[T]}.
6 % The internal representation of a stack consists of an element count and the
7 % actual elements of the stack in a list.
8
9 -spec is_empty(stack(_T)) -> boolean().

10 is_empty({0, []}) ->
11 true;
12 is_empty({_N, [_Top|_Rest]}) ->
13 false.
14
15 -spec size(stack(_T)) -> non_neg_integer().
16 size({N, _Elems}) ->
17 N.
18
19 -spec new() -> stack(_T).
20 new() ->
21 {0, []}.
22
23 -spec push(T, stack(T)) -> stack(T).
24 push(X, {N,Elems}) ->
25 {N+1, [X|Elems]}.
26
27 -spec pop(stack(T)) -> {T,stack(T)}.
28 pop({0, []}) ->
29 throw(stack_empty);
30 pop({N, [Top|Rest]}) when N > 0 ->
31 {Top, {N-1,Rest}}.
32
33 -spec safe_pop(stack(T)) -> {‘ok’,T,stack(T)} | ‘error’.
34 safe_pop({0, []}) ->
35 error;
36 safe_pop({N, [Top|Rest]}) when N > 0 ->
37 {ok, Top, {N-1,Rest}}.� �

Listing 2.4: ADT example: simple implementation of a stack

Chapter 3

Property-Based Testing and
PropEr

3.1 Software Testing

3.1.1 Unit Testing

Testing is the most direct way for programmers to get feedback on the quality of their
code. Manual testing of programs, however, is a time-consuming and tedious process, and
often amounts to a considerable portion of software production costs. Because of this,
there is an ongoing effort within the software engineering field to automate as much of the
testing process as possible. One of the methodologies that lends itself well to automation
is Unit Testing [10], whereby each unit of a software system is considered a black box and
tested separately from the others. In functional languages such as Erlang, the smallest
unit of any application is a single function.

The process of testing a single function can be conceptually divided into three steps:

1. Acquire a valid input for the function.
2. Run the function for that input and capture its output.
3. Decide if the input-output pair conforms to the function’s intended behaviour (also

known as the “oracle problem” [53, 94]).

The second step of this workflow can nowadays be fully automated using unit testing
frameworks like xUnit. Most conventional testing tools, however, leave it upon the tester
to both provide the inputs and decide if the corresponding outputs are acceptable. xUnit
frameworks, for example, require the user to provide a series of test inputs, along with their
corresponding expected outputs. This approach essentially forces the tester to manually
calculate the output for each test input, a process that tends to become impractical as
input sizes grow, meaning that most such test cases will end up rather small. Moreover, no
matter how big a test suite they write, users can never be certain that they have covered
all aspects of a program’s behaviour.

29

30 Chapter 3. Property-Based Testing and PropEr

3.1.2 Property-Based Testing

Property-based testing is a novel approach to software testing, where the tester only
needs to specify the generic structure of valid inputs to the program under test, along
with a number of properties (regarding the program’s behaviour and the input-output
relation) which are expected to hold for every valid input. A property-based testing
tool, when supplied with this information, will automatically produce progressively more
complex random valid inputs, then apply those inputs to the program while monitoring its
execution, to ensure that it behaves according to its specification. In fact, property-based
testing tools allow full use of the host language for writing assertions, meaning that users
can accurately describe a wide variety of logical properties, even ones that involve more
than one functions. Users may also write their own test data generators, should they
require greater control over the input generation process.

By following this methodology, a tester’s manual tasks are reduced to correctly specifying
the test function’s input format and formulating a set of properties that accurately describe
the program’s intended behaviour. While not trivial, these tasks only require a fraction
of the time it takes to write enough test cases to achieve the same goal. The resulting
properties are also much more concise than a long series of input-output pairs, but, if
used properly, can accomplish a much more thorough testing of the program. Moreover,
properties can serve as a checkable partial specification of a program, one that is much
more general than any set of instantiated test cases, and thus much better at documenting
the behaviour of the program.

To illustrate the merits of property-based testing as opposed to traditional testing method-
ologies, consider the following example: We wish to test our implementation of a ‘delete’
function for lists (Listing 3.1), which should take a term ‘X’ and a list ‘L’ and return a
list identical to ‘L’, but with all occurences of ‘X’ removed. We will test our code using
EUnit (Erlang’s main implementation of an xUnit framework [2]) and PropEr (our imple-
mentation of a property-based testing tool). EUnit will test the ‘delete’ function using the
9 test cases (input-expected output pairs) we have written. PropEr will test the function
by checking whether ‘X’ is really absent from the returned list in every one of a serires of
random inputs.

Listing 3.2 contains the results of testing. We can see that PropEr managed to find an
error in our implementation, one that manifests for a class of inputs not exercised by our
test cases, namely lists containing two (or more) instances of ‘X’. Indeed, upon careful
inspection it becomes apparent that our code only deletes the first occurence of ‘X’ from
the input list.

3.1.3 The Need for Shrinking

Because test inputs are randomly generated, the part of a failing test case that is actually
responsible for the failure can easily become lost inside a lot of irrelevant data. In our last
example, only 2 of the 49 elements of the initial failure-inducing list actually contributed
to the fault. Most programmers are already familiar with this problem, since they often
have to devote a lot of time to manually extract the useful part from a long failure report,
before moving on to pinpointing the fault. The property-based testing tool can aid the
programmer in this regard by automatically simplifying a failing test case before presenting
it to the user, through a process called “shrinking”. In most cases, shrinking works in the

3.1 Software Testing 31

� �
1 -module(mylists).
2 -export([delete/2]).
3 -include_lib(”proper/include/proper.hrl”).
4 -include_lib(”eunit/include/eunit.hrl”).
5
6 %---
7
8 delete(X, L) ->
9 delete(X, L, []).

10
11 delete(_, [], Acc) ->
12 lists:reverse(Acc);
13 delete(X, [X|Rest], Acc) ->
14 lists:reverse(Acc) ++ Rest;
15 delete(X, [Y|Rest], Acc) ->
16 delete(X, Rest, [Y|Acc]).
17
18 %---
19
20 delete_test_() ->
21 [?_assert(delete(X,L1) =:= L2) || {X,L1,L2} <- test_cases()].
22
23 test_cases() ->
24 [{1,[],[]},
25 {1,[1],[]},
26 {2,[1],[1]},
27 {2,[2,1],[1]},
28 {1,[1,2,3],[2,3]},
29 {2,[1,2,3],[1,3]},
30 {3,[1,2,3],[1,2]},
31 {4,[1,2,3],[1,2,3]},
32 {100,lists:seq(1,200),lists:seq(1,99) ++ lists:seq(101,200)}].
33
34 %---
35
36 prop_delete() ->
37 ?FORALL({X,L}, {integer(),list(integer())},
38 not lists:member(X, delete(X,L))).� �

Listing 3.1: Property-based testing vs. xUnit: code under test

� �
1> eunit:test(mylists:delete_test_()).

All 9 tests passed.
ok
2> proper:check(mylists:prop_delete()).
...!
Failed, after 54 test(s).
{38,[-139,-29,-105,16,0,-11,26,-15,7,-23,-2,-82,-3,-24,-162,45,5,-36,-11,-22,-6,
3,401,38,101,-120,38,129,-11,-49,-30,17,41,26,-56,40,66,92,-4,23,39,-32,-3,27,
28,-34,-67,-195,-18]}
Shrinking(14 time(s))
{0,[0,0]}
false� �

Listing 3.2: Property-based testing vs. xUnit: testing results

32 Chapter 3. Property-Based Testing and PropEr

same way as a human tester, by consecutively removing parts of the failing input until no
more can be removed without making the test succeed. In our last example, the shrinking
process eventually returns a list of 2 elements, which are both necessary for triggering
the error. This “minimal” test case, whose every part is essential to the failure, will serve
as a good starting point for the debugging process. The shrinking process can often be
fine-tuned through user-defined shrinking strategies.

3.1.4 Implementations

The first implementation of a property-based testing tool was QuickCheck [25], a combina-
tor library written in Haskell, initially designed for testing pure functions. QuickCheck-like
tools have since been developed for a variety of other languages (e.g. Clean [55]). Erlang
versions include Quviq QuickCheck [8], a proprietary application written by the original
authors of QuickCheck and marketed as a commercial product, and Triq [89], which was
written by Kresten Krab Thorup and released as open-source software.

3.2 Our Implementation: PropEr

We have implemented a property-based testing tool for the Erlang language, called PropEr
(PROPerty-based testing tool for ERlang). In its current form, PropEr is mainly useful
for testing pure functions. We have strived to keep PropEr’s interface compatible with
other such tools for Erlang, but also bring it closer to Erlang’s type system.

3.2.1 PropEr Workflow

A test run of a single property typically follows this workflow:

1. Parse the property.
2. Randomly generate valid instances for each universally quantified variable in the

property, based on its type.
3. If for this input the property code evaluates to ‘true’ without throwing an exception,

repeat from 2. Else:
4. Report the failing test case to the user.
5. Try to shrink the test case to one that is simpler but fails the property in the same

way.
6. If you cannot shrink the test case any further, report it to the user and exit. Else,

repeat from 5.

The user can specify both a maximum number of tests to run (default is 100 tests) and a
maximum number of shrinks (default is 500 shrinks). Failing test cases can be saved and
re-applied to the same property, allowing the user to easily check if he has successfully
fixed the problem.

3.2 Our Implementation: PropEr 33

3.2.2 Writing Properties

Properties are written using Erlang expressions, with the help of a few predefined macros1.
The simplest properties that PropEr can test consist of a single boolean expression, which
is expected to evaluate to ‘true’. An expression that evaluates to ‘false’ or throws an
exception during evaluation is considered a failing property. Thus, the test ‘true’ always
succeeds, while the tests ‘false’ and ‘throw(some_exc)’ always fail. More complex (and
useful) properties can be written by wrapping a boolean expression with one or more of
the following wrappers:

?FORALL(Xs, Xs_type, Prop)
The Xs field can contain either a single variable, a tuple of variables or a list of
variables. The Xs_type field must then contain a single PropEr type (for more on
the PropEr type system, see the next section), a tuple of types of the same size as
the tuple of variables or a list of types of the same length as the list of variables,
respectively. Tuples and lists can be arbitrarily nested, as long as Xs and Xs_type are
compatible. All the variables inside Xs can (and should) be present as free variables
inside the wrapped property Prop. When a ?FORALL wrapper is encountered, a
random instance of Xs_type is produced and each variable in Xs is replaced inside
Prop by its corresponding instance.

?IMPLIES(Precondition, Prop)
This wrapper only makes sense when in the scope of at least one ?FORALL. The
Precondition field must contain a boolean expression, normally one that includes
some of the universally quantified variables in scope. If the precondition evaluates
to ‘false’ for the variable instances produced in the enclosing ?FORALL wrappers,
the test input is considered invalid and thus is rejected, ending the testing round
early.

?TIMEOUT(Time_limit, Prop)
This wrapper adds an extra failure condition: Prop will be considered failing if it
takes more than Time_limit milliseconds to return. The purpose of this wrapper is
to test code that may hang if something goes wrong.

We also define a few helper wrappers for collecting statistics on the produced instances. It
is a good idea to observe the distribution of generated test data, at least while developing
the properties, to ensure that a sufficient number of non-trivial tests are run.

At this point we give a few examples of properties (Listing 3.3) and the output we get
from testing them (Listing 3.4). PropEr uses intermediate output to report on the testing
progress: each ‘.’ signifies a successful test or shrink, each ‘x’ a rejected test and each ‘ !’
a failing test.

3.2.3 The PropEr Type System

The input domain of functions is specified through the use of a custom type system,
modeled closely after the type system of the language itself. The basic operations that
involve types in PropEr are:

1Macros in Erlang always begin with a ‘?’.

34 Chapter 3. Property-Based Testing and PropEr

� �
1 prop_correct() ->
2 ?FORALL({X,Y}, {integer(),integer()}, X + Y =:= Y + X).
3
4 prop_incorrect() ->
5 ?FORALL(X, integer(), X*X > X).
6
7 prop_nested() ->
8 ?FORALL(X, pos_integer(),
9 ?FORALL(Y, range(0,X-1), X*X > Y*Y)).

10
11 prop_good_precondition() ->
12 ?FORALL({X,Y}, {integer(),integer()},
13 ?IMPLIES(Y =/= 0, (X div Y) * Y + X rem Y =:= X)).
14
15 prop_bad_precondition() ->
16 ?FORALL(X, neg_integer(), ?IMPLIES(X >= 0, X*X >= X)).� �

Listing 3.3: Examples of properties

� �
1> proper:check(props:prop_correct()).
..
....................
OK, passed 100 test(s).
2> proper:check(props:prop_incorrect()).
...!
Failed, after 4 test(s).
1
Shrinking .(1 time(s))
0
3> proper:check(props:prop_nested()).
..
....................
OK, passed 100 test(s).
4> proper:check(props:prop_good_precondition()).
x...x.................
........x..............
OK, passed 100 test(s).
5> proper:check(props:prop_bad_precondition()).
xx
xx
xx
xx
xx
xx
xxxxxxxxxxxxxxxxxxxx
Error: no valid test could be generated.� �

Listing 3.4: Output from example properties

3.2 Our Implementation: PropEr 35

Instance generation
Given a type, produce a valid instance of that type. At the start of every test run,
PropEr produces only small instances of types in ?FORALLs, but gradually increases
their complexity as more tests pass. To accomplish this, PropEr uses a global ‘size’
non-negative integer parameter, which influences the generation of every type. ‘Size’
starts at 1 and increases by 1 with each successful test. Its purpose is to control the
maximum size of produced instances: the actual size of a produced instance is chosen
randomly, but can never exceed the value of the ‘size’ parameter at the moment of
generation. A more accurate definition is this: the maximum instance of ‘size’ S can
never be smaller than the maximum instance of ‘size’ S − 1. The actual size of an
instance is measured differently for each type. For example, the actual size of a list
is the sum of sizes of all its elements + 1, that of a union is the size of the selected
element, while that of a tree may be the number of its internal nodes.

Instance checking
Given a term and a type, decide if the term is a valid instance of the type. This
operation comes in useful when shrinking instances of types in a ?FORALL that
contains other ?FORALLs, since the nested types’ structures may depend on the
instance generated for the top-level ?FORALL (e.g. see the prop_nested property
in Listing 3.3). In this case, we must ensure that the old instances of the nested
types are also valid instances for the new nested types.

Shrinking
Given a term and its type, produce all2 simpler instances of the type (this can be
done lazily). In our case, “simpler” usually means “smaller”. The top layer of PropEr
will only accept a shrunk instance if it fails the property in the same way as the
original instance.

Table 3.1 gives an overview of the basic type constructs of the PropEr type system, along
with a description of all valid instances for each type. Table 3.2 explains what constitutes
a “simpler” instance of each type, i.e. how PropEr will attempt to shrink an instance of
this type. In addition to the information presented in these tables, we note the following
on the basic PropEr types:

• Function types can also be specified using a list of argument types in place of the
arity parameter. Currently, however, these are only used to calculate the arity of
the function.

• We have omitted pids, ports and references from the PropEr type system, because
these data types normally serve as identifiers to application-specific resources, there-
fore there is no point in producing random ones for testing.

• List syntax in the PropEr type system differs from list syntax in the Erlang type
system, see Table 3.3.

• Because instances of a union or wunion shrink to the first type choice, users should
write the simplest case first in the choices list.

2For reasons of efficiency, we relax this requirement a little when shrinking instances of variable-length
types, such as lists. In particular, we never try to shorten such an instance by removing two or more non-
contiguous parts at once.

36 Chapter 3. Property-Based Testing and PropEr

Term Group Related Types Represented Terms

Integers

range(<Lo>,<Hi>) integers between <Lo> and <Hi>
integer() all integers

non_neg_integer() non-negative integers
pos_integer() positive integers
neg_integer() negative integers

Floats
float() all floats

float(<Lo>,<Hi>) floats between <Lo> and <Hi>
non_neg_float() non-negative floats

Atoms atom() all atoms (except some special ones used inter-
nally by PropEr)

Binaries binary() all binaries
binary(<Len>) binaries of length <Len> (in bytes)

Bitstrings bitstring() all bitstrings
bitstring(<Len>) bitstrings of length <Len> (in bits)

Pids — —
Ports — —

References — —
Funs function(<N>,Type) <N>-arity pure functions returning Type

Tuples {T1,T2,…,TN} tuples of N elements, of types T1,T2,…,TN

loose_tuple(Type) any-size tuples whose elements are all of type
Type

Lists
list(Type) lists with elements of type Type

vector(<Len>,Type) lists of <Len> elements, all of type Type
[T1,T2,…,TN] lists of N elements, of types T1,T2,…,TN

—

union([T1,T2,…,TN])
instances of T1, T2, …, or TN , each of the types
T1,T2,…,TN is equally likely to be picked for gen-
eration

wunion([{w1,T1},…]) equivalent to union([T1,…,TN]), but the type to
generate is picked based on the weights w1,…,wN

any() all Erlang terms (for efficiency reasons, we never
produce functions)

<Term> only the term <Term> (singleton type)

Table 3.1: Basic PropEr types

3.2 Our Implementation: PropEr 37

Term Group Related Types Instances shrink to

Integers

range(<Lo>,<Hi>) integers closer to abs_min(<Lo>,<Hi>)
integer() integers closer to 0

non_neg_integer() integers closer to 0
pos_integer() integers closer to 1
neg_integer() integers closer to −1

Floats
float() floats closer to 0.0

float(<Lo>,<Hi>) floats closer to abs_min(<Lo>,<Hi>)
non_neg_float() floats closer to 0.0

Atoms atom() atoms of smaller length (avoiding the special
atoms PropEr uses internally)

Binaries binary() shorter binaries with byte values closer to 0

binary(<Len>) same-length binaries with byte values closer to
0

Bitstrings bitstring) shorter bitstrings with bit values closer to 0

bitstring(<Len>) same-length bitstrings with bit values closer to
0

Pids — —
Ports — —

References — —
Funs function(<N>,Type) (doesn’t shrink)

Tuples {T1,T2,…,TN} same-size tuples with simpler elements
loose_tuple(Type) smaller tuples with simpler elements

Lists
list(Type) shorter lists with simpler elements

vector(<Len>,Type) same-length lists with simpler elements
[T1,T2,…,TN] same-length lists with simpler elements

—
union([T1,T2,…,TN]) instances of types closer to the head of the list,

simpler instances of the selected type

wunion([{w1,T1},…]) instances of types closer to the head of the list,
simpler instances of the selected type

any() (depends on the structure of the instance)
<Term> (doesn’t shrink)

Table 3.2: Basic PropEr types’ shrinking strategies

38 Chapter 3. Property-Based Testing and PropEr

• Apart from these basic types, we also define a few aliases and QuickCheck compati-
bility types.

Type Expression Type System
Erlang PropEr

[integer()] any-length list of integers lists of 1 integer
[integer(),integer()] (illegal) lists of 2 integers

Table 3.3: List syntax differences

Programmers can also use the following macros to customize basic types:

?LET(Parts, Parts_type, In)
In order to produce an instance of this type, PropEr generates a random instance
of Parts_type, matches it with Parts and replaces all variables inside In with their
corresponding values from the generated instance. The In part is allowed to evaluate
to a type, in which case an instance of the inner type is generated recursively – this
allows for nested ?LETs. To be able to instance-check and shrink instances of ?LETs,
we need to save the generated instance of Parts_type, since that information may
be partially lost when applied to In (consider, for example, this type: ?LET({X,Y},
{float(),float()}, X+Y)). To accomplish this, instances of ?LETs are saved in an
intermediate form: {‘$used’,Parts,Value}. To shrink an instance of a ?LET, we first
shrink each of the Parts and re-apply them to In, then when this is done we move on
to shrinking the Value. When In evaluates to a type, we need to check that the old
Value is a valid instance of In after the parts have been shrunk – we do this through
instance-checking.

?SUCHTHAT(X, X_Type, Condition)
This produces a specialization of Type, which only includes those terms that sat-
isfy the constraint Condition, i.e. those terms for which the function ‘fun(X) →
Condition end’ returns ‘true’. Currently, PropEr performs no constraint satisfaction
analysis – instead, it produces instances of Type randomly until it finds a valid one.
This means constraints shouldn’t be very strict, i.e. most instances of Type should
satisfy the condition, else it will take a lot of tries to find a valid one. This would
result in slower testing or even an error, if a constraint tries limit is reached. Users
should also make sure that even small instances can satisfy the constraint, since
PropEr will only try small instances at the start of testing. Any shrunk instance of
a specialized type must also satisfy the constraint, else it is rejected.

?SHRINK(Type, Alternatives)
This adds one or more alternative types to Type. The Alternatives field should be a
list of types to be used when shrinking an instance of this type: Instances of each
of the Alternatives will first be tried in place of the original instance, with the types
in the head of the list taking precedence. Therefore, types in Alternatives should be
simpler than Type, with the simplest cases declared first.

3.2 Our Implementation: PropEr 39

3.2.4 Recursive Generators

If users need to work with recursive data types, they have to manually guide their gen-
eration process; it’s the user’s responsibility to provide the base case and to ensure that
generation always terminates. To accomplish this, a user must handle the ‘size’ parameter
manually: he has to write a recursive generator function that accepts (at least) a Size
parameter, which should be distributed among all recursive calls of each recursion path.
The base case should be provided in a separate clause for Size = 0 and all other clauses
should contain a fallback to that clause. Finally, users have to tell PropEr how to apply
the value of ‘size’ to this generator, by using a ?SIZED macro.

The following macros and functions are mainly useful for writing recursive type declara-
tions:

?SIZED(Size, Generator)
Constructs a new type from a sized generator. To produce instances of this type,
PropEr will apply the current value of ‘size’ to the function ‘fun(Size) → Generator
end’.

resize(New_size, Type)
This declaration instructs PropEr to use New_size instead of the value of the ‘size’
parameter to produce instances of Type.

?LETSHRINK(Parts, Parts_type, In)
This construct is equivalent to a simple ?LET, but Parts must necessarily be a
list of variables. Also, when shrinking an instance of this type, the parts that were
combined to produce it are first tried in place of the failing instance before proceeding
with normal ?LET shrinking strategies. This can make the shrinking process much
more effective, therefore users should always use ?LETSHRINKs when combining
recursively generated instances.

?LAZY(Type)
This construct delays the generation of Type. Users should wrap each recursive
choice in the non-zero-size clause of a recursive generator with a ?LAZY macro, so
as to achieve linear generation time.

For an example of a recursive type declaration see Listing 3.5, where we provide a generator
for the ‘tree(T)’ type declared in Listing 2.3.

3.2.5 Symbolic Instances

As explained in Section 2.3.4, instances of ADTs should always be constructed through
successive calls to public API functions exported from their defining module. When writing
a (recursive) generator for an ADT, however, simply limiting oneself to API calls is not
sufficient. An instance produced by such a generator will essentially be a term describing
the internal representation of the ADT instance, which the user can’t reason about. It is
much more practical to represent a randomly produced instance of an ADT as the series
of API calls that will be used to construct it [7]. Working with such, so-called, “symbolic”
instances has several benefits:

40 Chapter 3. Property-Based Testing and PropEr

� �
1 tree(T) ->
2 ?SIZED(Size, tree(Size,T)).
3
4 tree(0,_T) ->
5 leaf;
6 tree(Size,T) ->
7 wunion([
8 {1, ?LAZY(tree(0,T))},
9 {5, ?LAZY(?LETSHRINK([SubTree],

10 [tree(Size - 1,T)],
11 {single,T,SubTree}))},
12 {5, ?LAZY(?LETSHRINK([L,R],
13 [tree(Size div 2,T),tree(Size div 2,T)],
14 {node,T,L,R}))}
15]).� �

Listing 3.5: Example of a PropEr recursive type declaration

• Failing test cases are easier to read and understand.
• Failing test cases are easier to shrink.
• It is especially useful when testing the data type itself: Certain implementation

errors may depend on some particular selection and ordering of API calls, thus it is
important to cover the entire ADT construction API.

PropEr supports the symbolic representation of datatypes, using the following syntax:
{call,Module, Function, Arguments}. A term like that represents a call to the API function
Module:Function with arguments Arguments. Each of the arguments may be a symbolic
call itself or contain other symbolic calls in lists or tuples of arbitrary depth. The ‘eval/1’
function can be used to evaluate a symbolic instance, i.e. calculate the concrete term it
represents. The user normally needs to evaluate symbolic instances manually inside the
property-testing code, unless she uses ‘$call’ tuples, which are evaluated automatically
before being applied to a property.

Listing 3.6 presents a generator for the stack data type (see Listing 2.4), along with a
sample property that uses it.

Note that the above generator may produce symbolic instances like this one: {‘$call’,
erlang, element, [2, {‘$call’, stack, pop, [{‘$call’, stack, new, []}]}]}, which will raise an
exception when evaluated. Such symbolic instances are ill-defined, that is, they don’t
correspond to a real value. We can apply a ‘well_defined’ attribute to an ADT generator
to constrain it to only well-defined symbolic instances. This works by checking each
symbolic instance returned by the generator to see if it can be evaluated without throwing
an exception. If it cannot, the generator is called again, until it produces a valid symbolic
value. This strategy obviously assumes that the majority of generated symbolic values are
well-defined.

3.2 Our Implementation: PropEr 41

� �
1 stack(T) ->
2 ?SIZED(Size, stack(Size,T)).
3
4 stack(0,_T) ->
5 {‘$call’,stack,new,[]};
6 stack(Size,T) ->
7 wunion([
8 {1, ?LAZY(stack(0,T))},
9 {5, ?LAZY(?LETSHRINK([S],

10 [stack(Size - 1,T)],
11 {‘$call’,stack,push,[T,S]}))},
12 {2, ?LAZY(?LETSHRINK([S],
13 [stack(Size - 1,T)],
14 {‘$call’,erlang,element,
15 [2,{‘$call’,stack,pop,[S]}]}))},
16 {2, ?LAZY(?LETSHRINK([S],
17 [stack(Size - 1,T)],
18 {‘$call’,erlang,element,
19 [3,{‘$call’,stack,safe_pop,[S]}]}))}
20]).
21
22 prop_push_pop() ->
23 ?FORALL({X,S}, {integer(),stack(integer())},
24 begin
25 {Y,_} = pop(push(X,S)),
26 X =:= Y
27 end).� �

Listing 3.6: Stack generator and sample property

Chapter 4

Utilizing Types in Testing

4.1 Motivation

As illustrated in the previous chapter, property-based testing tools can help to significantly
speed up the testing process. Utilizing such tools efficiently, however, presents a new set
of challenges for the programmer.

One of the first things a programmer will realize when working with such tools is that
finding the right properties to test is often a non-trivial matter. Consider, for exam-
ple, the situation where one wants to test his solution to an optimization problem. The
straight-forward course of action would be to write a property that tests whether, for every
one of a series of random inputs, the program under test produces the optimal solution.
Checking that a solution is optimal, however, may involve comparing it to every other
possible solution, a process that quickly becomes impractical as input size grows, in many
cases (e.g. NP-Complete optimization problems, such as the TSP) exhibiting exponen-
tial complexity. Even for less extreme cases, it is ofter hard to translate one’s abstract
understanding of a program’s expected behaviour into concrete properties. Solutions to
this problem are inherently program-specific, therefore we can do little to automate the
process.

A secondary inconvenience for new users of a property-based testing tool such as PropEr
is the need to become familiar with a new type declaration language for writing term
generators. To make this process as painless as possible, PropEr’s type system has been
modeled closely after Erlang’s type system. Still, programmers have to write generators
separately from the functions under test, meaning that changes to a function’s interface
will often need to be replicated in one or more generators. This cannot be avoided in cases
where the programmer needs full control over the random generation process, e.g. if she
wishes to fine-tune the size frequencies of produced terms. Often, however, programmers
will end up writing generators that are almost equivalent to the types in a function’s spec.
Such use cases would benefit from a testing tool that can work with type information
directly, therefore eliminating the need for the presence of redundant generators. A tool
like that would be especially useful when working with recursive datatypes, since generators
for such types require manual specification of both the size distribution and shrinking
behaviour of produced instances.

43

44 Chapter 4. Utilizing Types in Testing

4.2 Converting Types to Generators

The first component we need to implement is a type-to-generator converter.

4.2.1 Simple Types

Converting built-in Erlang types to PropEr types is a straight-forward process: we just
follow the conversion formula outlined in Table 4.11. Note that some Erlang types do
not have an equivalent in the PropEr type system, most notably types for pids, ports
and references, i.e. datatypes which PropEr cannot generate, for reasons explained in
Section 3.2.3. PropEr also lacks types for describing bitstrings with a unit size greater than
1 and functions of unspecified arity; these types, however, are not commonly encountered
in function specifications.

User-defined types and records are also relatively easy to handle, so long as they are not
recursive. Converting a user-defined type or record is simply a matter of recursing into
its type structure, except for two special cases, which require some extra bookkeeping:
First, converting a record expression with field type updates involves an extra step of
applying those updates to the record’s original definition. Second, we cannot recurse into
the body of a parametric type before applying the actual parameters to it. In this case,
however, working on a purely syntactic level is not enough. We cannot simply substitute
each variable in the type definition with its corresponding value, since the arguments of a
type reference are considered to be in the same scope as the reference, not the definition.
Consider, e.g., modules ‘a’ and ‘b’ from Listings 4.1 and 4.2: In the process of converting
the type reference ‘a:foo()’ we would have to convert the type expression ‘b:bar(boo())’.
Simply replacing ‘X’ with‘boo()’ in the RHS of bar’s declaration would produce the type
expression ‘{baz(),boo()}’, which is illegal in the context of either module. Instead, we
pre-process each of the actual parameters, match the resulting PropEr types to variable
names, then use this mapping while recursing to lazily substitute variables as we find
them.� �

1 -module(a).
2 -export_type([foo/0]).
3
4 -type foo() :: b:bar(boo()).
5 -type boo() :: atom().� �

Listing 4.1: Parameter substitution example, module ‘a’

4.2.2 Recursive Types

PropEr can also handle self-recursive and mutually recursive types. We require, however,
that such types are written in a way that makes their base case clear. In particular, PropEr
currently only accepts recursive types whose top level is either a maybe empty list (then
the base case is the empty list) or a union that contains at least one choice which doesn’t

1In this table, Type′ stands for the PropEr equivalent of the Erlang type Type. Also, ‘non_empty(Type)’
is shorthand for ‘?SUCHTHAT(X, Type, X =/= [])’.

4.2 Converting Types to Generators 45

Term Group Erlang Types PropEr Types

Integers

<Int> <Int>
<Lo>..<Hi> range(<Lo>,<Hi>)

integer() integer()
non_neg_integer() non_neg_integer()

pos_integer() pos_integer()
neg_integer() neg_integer()

Floats float() float()

Atoms <Atom> <Atom>
atom() atom()

Binaries
binary() binary()

 
_:<Base> binary(<Base>)

Bitstrings

bitstring() bitstring()
 

_:_*1 bitstring()
_:_*<Unit> —

_:<Base>, _:_*1 bitstring(<Base>)
_:<Base>, _:_*<Unit> —

Pids pid() —
Ports port() —

References reference() —

Funs

fun() —
fun((…) → Type) —
fun(() → Type) function(0,Type′)

fun((T1,…,TN) → Type) function(<N>,Type′)

Tuples
tuple() loose_tuple(any())

{} {}
{Type1,…,TypeN} {Type′1,…,Type′N}

Lists
[] []

[Type] list(Type′)
[Type,…] non_empty(list(Type′))

—
any() any()
none() —

Type1 | … | TypeN union([Type′1,…,Type′N])

Table 4.1: Built-in Erlang types to PropEr types

� �
1 -module(b).
2 -export_type([bar/1]).
3
4 -type bar(X) :: {baz(),X}.
5 -type baz() :: float().� �

Listing 4.2: Parameter substitution example, module ‘b’

46 Chapter 4. Utilizing Types in Testing

directly reference the type (then the base case is formed as a union of all such choices). In
this section we give a high-level description of PropEr’s recursive type handling subsystem.

Detecting Recursion

The first issue we need to solve is detecting when the type we are processing is recursive.
We achieve this by maintaining a stack during our recursion, where we record each type
we recurse into. If at some point we come across a reference to a type that’s present in the
stack, we know we are dealing with a recursive type. A recursion path may span multiple
modules, therefore each type reference stored in the stack must record the type’s module.
If a type is parametric, we also need to store the parameter values of each reference, so that
we can differentiate between them. Records may be recursive as well, so we store them on
the stack too (we use a flag to distinguish between user-defined types and records in the
stack). Instances of the same record that contain different field type updates essentially
represent different types, therefore we need to distinguish them. To achieve this, we have
to store the field type updates of record references in the stack. Type parameters and
record field type updates are stored in their processed forms, as PropEr types.

Handling Recursion

When we detect a recursive call, we notify the parent type by returning a rec_fun, i.e. a
function that takes a list of recursive generators and arranges them according to the type
structure. A rec_fun also accepts a second, integer valued argument, which controls the
size parameters passed to the generators. A rec_fun that corresponds to a simple recursive
call should accept a single generator (the one for the recursive type) and call it directly
with the size parameter passed to it. The code for a derived type (list, tuple, fun or union)
will collect all rec_funs returned to it by inner types and place them as arguments to its
type’s generator. The result will in turn be propagated upwards in a rec_fun, which should
also somehow distribute its size parameter to all the combined generators. The conversion
code also needs a way to keep track of the types of each of a rec_fun’s expected generators.
Consequently, each rec_fun is accompanied by a list of type references (in the same format
as the elements of the recursion stack), which correspond to the generators in the rec_fun’s
first argument; we call this the list of rec_args. When a rec_fun that expects at least one
generator for a specific type eventually reaches that type’s conversion code, we essentially
instruct it to use itself recursively, through the use of the Y combinator.

Top Level Behaviour

As mentioned above, not every construct is allowed at the top level of a recursive type;
we use the recursion stack to enforce this. The recursion-handling code for every type
construct starts with a top level check: it compares each of the rec_args returned to it
with the top of the recursion stack. For this to work correctly, we need to record to the
stack every entry to a compound type, by pushing special values that don’t correspond to
user-defined types. The code for most types will return an error if it detects that it’s on
top level, except for unions and lists, which will enter base case preparation mode instead.
In this mode, the code for lists will set up the empty list as the base case and lazify its

4.2 Converting Types to Generators 47

element type. The code for unions will partition its choices into three categories: non-
recursive, non-self-recursive (doesn’t contain references to the type itself, but to types that
are mutually recursive with it) and self-recursive. The choices of the first two categories will
form the union of the 0-size base case, while the choices in the second and third categories
are combined with a base case fallback in a weighted union, to form the recursive clause of
the generator. Every recursive choice in this clause is then lazified, to speed up recursive
generation. Then, the code for the type itself only needs to apply the Y combinator and
wrap the produced recursive generator in a ?SIZED macro.

Specifying Shrinking Behaviour

A rec_fun normally expects to receive a list of generators, but if a generator will surely
be called exactly once, we could just pre-produce that single sub-instance and pass it to
the rec_fun in place of the generator. Thus, if the union-handling code at the top level of
a type knows that the rec_fun for a particular recursive choice will call some of the type’s
generators passed to it exactly once, it can instruct the code for that choice to pre-produce
the sub-instances of the type, then pass them to the rec_fun via a ?LETHSRINK, thus
greatly enhancing the shrinking behaviour of produced instances. The only constructs
that accommodate such use are simple recursive calls and tuples. Lists of references to a
recursive type (optionally wrapped in tuples with all other elements being non-recursive)
can also be constructed from a pre-produced list of instances. To keep track of the instance-
accepting arguments of rec_funs, each rec_arg also carries an ‘accepts instance’ flag,
which takes the values ‘true’, ‘false’ and ‘list’. If a construct (e.g. a fun) cannot work with
instances, it resets all flags in the rec_args before returning.

Handling Size

A generator for a recursive data type should always be constructed in such a way that
generation is guaranteed to terminate and the size of produced terms grows at a linear rate.
The generators that PropEr derives from type specifications achieve this by distributing
the value of size among recursive calls, i.e. they call the rec_funs returned by internal
types with a fraction of their size argument. Specifically, tuples distribute their size evenly
among the recursive elements, lists randomly distribute it among their elements, funs pass
it unchanged to their return value generator and unions pass it unchanged to each of the
recursive choice generators. Simply distributing the size, however, is not enough if some
recursion paths only call the recursive generator once. To counter this, we additionally
subtract 1 from the size on each recursive call (unless the size is already at 0). Finally, we
increment the size from inside the ?SIZED macro, so as to balance out the first subtraction.
When constructing the recursive clause of a generator, we assign a weight of 1 to the base
case fallback, and a weight of size / num_rec_choices to all recursive choices (or 1, if the
above expression evaluates to 0).

Examples

To illustrate this process, we provide a step-by-step analysis of the conversion of the
expression ‘tree(atom())’ (the tree/1 type was first defined in Listing 2.3). See Figure 4.1
for a graphic representation of the conversion process.

48 Chapter 4. Utilizing Types in Testing

Figure 4.1: Conversion process for ‘tree(atom())’

4.2 Converting Types to Generators 49

The type conversion system is asked to translate the type:

tree(atom())

First, we convert ‘atom()’ to its corresponding PropEr type, create a binding from the
type variable ‘T ’ to that type, push ‘tree(atom())’ to the recursion stack and recurse into
the type structure of ‘tree/1’:

‘leaf’ | {‘single’, T, tree(T)} | {‘node’, T, tree(T), tree(T)}

The union-handling code recurses into the first choice (after pushing ‘union’ to the recur-
sion stack):

‘leaf’
We convert the singleton type ‘leaf’ to to its equivalent PropEr type and return it to
the union handler. The union-handling code then recurses into the second choice (after
pushing ‘union’ to the recursion stack):

{‘single’, T, tree(T)}

The tuple-handling code pushes ‘tuple’ to the recursion stack and recurses into the first
element:

‘single’
We convert the singleton type ‘single’ to its equivalent PropEr type and return it to
the tuple handler. The tuple-handling code then recurses into the second element (after
pushing ‘tuple’ to the recursion stack):

T

The type variable ‘T ’ is replaced by its value, the PropEr equivalent of ‘atom()’, and
returned to the tuple handler. The tuple-handling code then recurses into the third element
(again, after pushing ‘tuple’ to the recursion stack):

tree(T)

We first process the single parameter of the type reference, which evaluates to the PropEr
equivalent of ‘atom()’. We then search the recursion stack for an instance of ‘tree(atom())’:
indeed, we find one three levels above, therefore we know that this one is a recursive call.
We notify the tuple handler directly above by returning the following:

rec_fun = fun ([G], S) → G(S) end
rec_args = [tree(atom())]

Having received at least one rec_fun from its elements, the tuple-handling code first verifies
that it’s not at the top level of a recursive type, then combines all its elements into a new
rec_fun-rec_args pair:

rec_fun = fun ([G], S) → {single, atom(), RF ([G], S)} end
rec_args = [tree(atom())]

where RF is the rec_fun returned by the tuple’s third element. This pair is then returned
to the union handler. The union-handling code then recurses into the third choice (after
pushing ‘union’ to the recursion stack):

{‘node’, T, tree(T), tree(T)}

50 Chapter 4. Utilizing Types in Testing

Following a similar process as above, we find that the first and second elements are easily
converted to PropEr types, while the third and fourth both return the same rec_fun-
rec_args pair:

rec_fun = fun ([G], S) → G(S) end
rec_args = [tree(atom())]

Having received at least one rec_fun from its elements, the tuple-handling code first verifies
that it’s not at the top level of a recursive type, then combines all its elements into a new
rec_fun-rec_args pair:

fun ([G1, G2], S) → {node, atom(), RF1([G1], S div 2), RF2([G2], S div 2)} end
[tree(atom()), tree(atom())]

where RF1 and RF2 represent the rec_funs returned by the tuple’s third and fourth
elements (notice that this rec_fun distributes its size among the two recursive calls). This
pair is then returned to the union handler. Having received at least one rec_fun from
its choices, the union-handling code first checks if it’s at the top level of a recursive type.
Indeed, we are directly below a reference to ‘tree(atom())’, therefore we enter base case
preparation mode: Of the three choices in the union, the first is not recursive, while the
other two are self-recursive. Thus, the base case for the type ‘tree(atom())’ is formed as
the union of a single choice: ‘leaf’. As for the other choices, all the generators passed
to them will be called exactly once, therefore we set up the generation code to use the
recursive generators early, in order to pre-produce all the corresponding sub-instances and
pass those to the rec_funs instead (see Listing 4.3 for the resulting recursive generator).
This recursive generator is then passed up to ‘tree(atom())’, which identifies itself among
the rec_args, therefore uses the Y combinator to instruct the returned rec_fun to use
itself recursively, then wraps the resulting generator in a ?SIZED macro to produce the
final PropEr type.
At this point, we provide the automatically generated recursive generators for some ex-
ample types (Listings 4.3, 4.4, 4.5 and 4.6). Note that such generators are never output to
the user; in fact, PropEr doesn’t generate any code when converting types. The examples
are presented in source form to make them more accessible to the reader.

Limitations

PropEr currently requires that the base case of a recursive type is made explicit by the
user. The reason for this is that PropEr flattens non-top level unions (combines all the
choices into one rec_fun). We made this design choice for reasons of performance: the
alternative would be to work with sets of rec_funs, taking the set product of all elements
every time we need to combine recursive generators into a compound type.
It is common practice, however, to write recursive types with the base case union at top
level, therefore this limitation will rarely be an issue. Even if an (otherwise valid) recursive
type declaration can’t be parsed, it is often trivial to rewrite it in a way that fixes the
problem: all the user has to do is move the base case union to the top level, as in this
example:

-type a() :: {‘a’, ‘none’ | a()}.
⇒ -type a() :: {‘a’, ‘none’} | {‘a’, a()}.

4.2 Converting Types to Generators 51

� �
1 -type tree(T) :: ‘leaf’ | {‘single’,T,tree(T)} | {‘node’,T,tree(T),tree(T)}.
2
3 %---
4
5 % This generator corresponds to tree(atom()).
6 tree_atom() ->
7 ?SIZED(Size, tree_atom(Size + 1)).
8 % We add 1 to (partially) balance out the -1 below.
9

10 tree_atom(Size) ->
11 tree_atom_(erlang:max(0, Size - 1)).
12 % We subtract 1 so that paths like ‘single’ will terminate.
13
14 tree_atom_(0) ->
15 union([
16 leaf
17]);
18 tree_atom_(Size) ->
19 W = erlang:max(1, Size div 2), % Size / num_rec_choices
20 wunion([
21 {1, ?LAZY(tree_atom(0))}, % fallback to base case
22 {W, ?LAZY(?LETSHRINK([A],
23 [tree_atom(Size)],
24 {single,atom(),A}))},
25 {W, ?LAZY(?LETSHRINK([A,B],
26 [tree_atom(Size div 2),tree_atom(Size div 2)],
27 {node,atom(),A,B}))}
28]).� �

Listing 4.3: Example: instance-accepting recursion path, compare this generator with the
manually written generator of Listing 3.5

� �
1 -type delayer() :: ‘done’ | fun(() -> delayer()).
2
3 %---
4
5 delayer() ->
6 ?SIZED(Size, delayer(Size + 1)).
7
8 delayer(Size) ->
9 delayer_(erlang:max(0, Size - 1)).

10
11 delayer_(0) ->
12 union([
13 done
14]);
15 delayer_(Size) ->
16 W = erlang:max(1, Size),
17 wunion([
18 {1, ?LAZY(delayer(0))},
19 {W, ?LAZY(function(0, delayer(Size)))}
20]).� �

Listing 4.4: Example: non-instance-accepting recursion path

52 Chapter 4. Utilizing Types in Testing

� �
1 -type gen_tree(T) :: ‘leaf’ | {‘node’,T,[gen_tree(T),...]}.
2 % general tree: each node has 1 or more branches
3
4 %---
5
6 % This generator corresponds to gen_tree(atom()).
7 gen_tree_atom() ->
8 ?SIZED(Size, gen_tree_atom(Size + 1)).
9

10 gen_tree_atom(Size) ->
11 gen_tree_atom_(erlang:max(0, Size - 1)).
12
13 gen_tree_atom_(0) ->
14 union([
15 leaf
16]);
17 tree_atom_(Size) ->
18 W = erlang:max(1, Size),
19 wunion([
20 {1, ?LAZY(gen_tree_atom(0))},
21 {W, ?LAZY(?LETSHRINK(A,
22 non_empty(list(gen_tree_atom())),
23 {node,atom(),A}))},
24]).� �

Listing 4.5: Example: list-instance-accepting recursion path

Another shortcoming of this translation strategy is that the distribution of generated
instances cannot be fine-tuned. Users, however, can often improve the distribution simply
by modifying their type declarations; redundant type declarations2 are especially useful
in this regard. For example, the type ‘a’ | ‘b’ | atom(), while semantically equivalent to
atom(), will result in a specialized generator, which returns the atoms ‘a’ or ‘b’ 66.6% of
the time. Users can also improve the shrinking behaviour of instances simply by writing
the simplest cases first in unions.

4.3 Integration with PropEr Notation

Having implemented an Erlang-to-PropEr type converter, we need to provide a way for
testers to write properties using Erlang types. We decided not to introduce a new wrapper,
but to extend the ?FORALL wrapper to also accept Erlang type references. If some part
of the type specification in a ?FORALL doesn’t correspond to a PropEr type, but would
constitute a legal Erlang type, we assume it represents that Erlang type and use the
method illustrated in the previous section to convert it. We allow the following uses of
Erlang types in a ?FORALL:

• Any local user-defined Erlang type may be used, as long as it’s not shadowed by a
local or imported function (or an auto-imported BIF) of the same name and arity.

2Note that redundant type declarations won’t confuse Dialyzer.

4.3 Integration with PropEr Notation 53

� �
1 -type expr() :: non_neg_integer() | {expr_binop(),expr(),expr()}
2 | {‘if’,bcond(),expr(),expr()}.
3 -type bcond() :: ‘true’ | ‘false’ | {bcond_unop(),bcond()}
4 | {bcond_binop(),bcond(),bcond()}
5 | {expr_comp(),expr(),expr()}.
6 -type expr_binop() :: ‘+’ | ‘-’ | ‘*’ | ‘/’.
7 -type bcond_unop() :: ‘not’.
8 -type bcond_binop() :: ‘and’ | ‘or’.
9 -type expr_comp() :: ‘=’ | ‘<’ | ‘>’.

10
11 %---
12
13 % The user has requested a generator for expr().
14
15 % ...
16
17 expr_(0) ->
18 union([
19 non_neg_integer()
20]);
21 expr_(Size) ->
22 W = erlang:max(1, Size div 2),
23 wunion([
24 {1, ?LAZY(expr(0))},
25 {W, ?LAZY(?LETSHRINK([A,B],
26 [expr(Size div 2),expr(Size div 2)],
27 {expr_binop(),A,B}))},
28 {W, ?LAZY(?LETSHRINK([A,B],
29 [expr(Size div 2),expr(Size div 2)],
30 {‘if’,bcond(),A,B}))}
31]).
32
33 bcond_(0) ->
34 union([
35 true,
36 false,
37 {expr_comp(),expr(0),expr(0)}
38]);
39 bcond_(Size) ->
40 W = erlang:max(1, Size div 3),
41 wunion([
42 {1, ?LAZY(bcond(0))},
43 {W, ?LAZY(?LETSHRINK([A],
44 [bcond(Size)],
45 {bcond_unop(),A}))},
46 {W, ?LAZY(?LETSHRINK([A,B],
47 [bcond(Size div 2),bcond(Size div 2)],
48 {bcond_binop(),A,B}))},
49 {W, ?LAZY({expr_comp(),expr(Size div 2),expr(Size div 2)})}
50]).
51
52 % ...� �

Listing 4.6: Example: mutual recursion

54 Chapter 4. Utilizing Types in Testing

• Any remote Erlang type may be used, as long as it’s exported from its defining
module and not shadowed by an exported function from that module, of the same
name and arity.

• Types (of any kind) can be combined in tuples and lists (the constructs ‘[…]’, ‘{…}’
and ‘++’ are all allowed).

• No other construct of Erlang’s type system is allowed. This includes union syntax,
binary type syntax, function type syntax and record syntax.

• The parameters of an Erlang type can only be other Erlang types.
• The parameters of a PropEr type can include both Erlang and PropEr types.
• In general, if an expression can be interpreted both as a PropEr and as an Erlang

type, the former takes precedence. This may cause some confusion when list syntax
is used (see Table 3.3).

The type system detection component that implements this behaviour essentially has a
single responsibility: to find all the ?FORALLs in a module and decide for each call3 in
the type field of every ?FORALL whether it refers to a function (i.e., a PropEr type) or an
Erlang type. Calls to PropEr types will be left unchanged, while references to Erlang types
will be replaced by calls to the type conversion subsystem. While type conversion can be
delayed until testing time, the procedure we just described must take place at compile
time, or the testing module may fail to compile. To illustrate this, consider module ‘a’
from Listing 4.7. The compiler will refuse to compile this module, since it considers ‘foo()’
to be a call to a non-existent local function.� �

1 -module(a).
2 -export([prop_foo/0]).
3
4 -type foo() :: atom().
5
6 prop_foo() ->
7 ?FORALL(X, foo(), is_atom(X)).� �

Listing 4.7: Example of a module that won’t compile without a parse transform

We implemented this step as a parse transform, i.e. a code transformation that works at
an abstract code level and is injected into the compilation process just before the source
program is checked for errors. Our parse transform works by recursing into any syntactic
construct in search of ?FORALLs. When we find one, we recurse into its type field (but
only into call arguments and the ‘[…]’, ‘{…}’ and ‘++’ constructs) in search of calls. If
we find a local call, we check whether a function of that name and arity is visible in the
module’s scope (i.e., one such function is declared in the module, or the user has imported
one such function, or there is an automatically-imported BIF with that name and arity).
If not, we assume it’s a reference to a local type and replace it with a call to the type
conversion code. This call will contain a reference to the module this ?FORALL was found
in, plus the whole type expression (including the arguments) printed to a string (we can’t
use the abstract code directly, because it’s in expression format; we need to re-parse it
as a type). If we find a remote call, we proceed in a more strict manner: we extract
the remote module’s exported functions and types and only consider the call as a remote

3A call is a syntactic entity of the form ‘call(…)’ (a local call) or ‘mod:call(…)’ (a remote call), which can
either be a function call or a reference to a type.

4.4 Handling Opaque Datatypes 55

type if the remote module does export such a type, but doesn’t export a function of the
same name and arity. The process of consulting remote modules during compilation goes
against standard Erlang practice, but any other solution would be much more complicated
and could potentially incur great runtime penalties.

4.4 Handling Opaque Datatypes

PropEr’s type conversion subsystem, as described in the previous sections, makes no dis-
tinction between normal and opaque types. Opaque types, however, are most often used
to describe ADTs with structure invariants. Producing an instance of such a data type
using only the information in its type declaration (essentially, its internal representation)
will most probably not be a valid ADT instance. Consider our simple ADT example of
a list-based stack, provided in Listing 2.4: It is very unlikely that a randomly produced
instance of ‘{N :: non_neg_integer(),L :: [T]}’ will satisfy the stack’s single invariant,
that N is always equal to the length of list L. It is, therefore, necessary that opaque types
receive special treatment.

The best way to work with ADTs, as explained in Section 3.2.5, is to use symbolic instances.
The symbolic generator for an ADT is, at its core, a listing of all possible ways to produce
an instance of the ADT using exported API functions. This information, however, should
already be available in the API functions’ specs. We have extended PropEr to consider
exported opaque types as ADT types, i.e. to ignore their internal representation and
instead produce symbolic instances. PropEr’s symbolic generators make use of all exported
functions from an ADT’s defining module that return at least one instance of the ADT
(according to their specs). In this section we give a high-level description of our method
for creating a symbolic generator for an opaque type.

4.4.1 Identifying Useful API Functions

The first step is to identify which functions from the opaque type’s defining module can
be used to produce instances of the ADT. We do this by scanning the specs of all exported
functions from that module, looking for a way to extract an ADT instance from the return
type. When working with parametric ADTs, we only want generic instances, therefore we
only look for opaque type references with universally quantified variables as parameters
(not bound by any subtype constraint). Currently, we only search the first clause of a
multi-clause spec, but this can easily be extended to try all clauses. Our search works
on a syntactic level: we only recurse into the type constructs ‘[…]’, ‘{…}’ and ‘…|…’ and
ignore references to custom types and record expressions; those are fairly uncommon in
the return type of API functions anyway. Table 4.2 gives a description of our search and
extraction strategies.

An API function may return an ADT instance inside a tuple; therefore, we need a method
for extracting the useful field from a tuple. A straight-forward solution would be to use
the ‘element/2’ BIF, which takes a tuple and a position and extracts the element at the
specified position in the tuple. We have chosen to extract the value through pattern
matching instead, for reasons that will become apparent in our analysis of unions. For
this purpose, we have defined a minimal pattern language: We only intend to pattern
match against tuples, therefore every pattern is a tuple. Each field of a tuple pattern can

56 Chapter 4. Utilizing Types in Testing

Type construct Is it usable? How to extract the ADT from an
instance of this type

ADT reference Yes (no action required)

Tuple Only if one of its fields is usable Extract the usable field through
matching, then recurse into it.

List Only if its element type is usable Take the head of the list and re-
curse into it.

Union
Only if one of the choices is us-
able and can be distinguished
from all the others

Use the extraction method for
the usable choice (it’s distin-
guishable, therefore there should
be no problem).

Anything else No (we can’t)

Table 4.2: API functions’ return type search strategy

take one of a few possible values, listed in Table 4.3. A pattern that we can match against
an M -size tuple to extract its Nth element would be an M -size tuple with all elements
equal to ‘0’, except for the Nth element, which would be a ‘1’. Atoms can be used in
patterns to test for the presence of an expected tag; this feature is of little use if a function
always returns a specific tuple, but is quite useful for distinguishing between tagged results
in a union. Our matching procedure will throw an exception if it cannot match a term
with the provided pattern (e.g. if the term is not a tuple or it’s a tuple of the wrong size
or it’s a tuple of the correct size but has the wrong tags).

Pattern Field Matching behaviour

0 Matches any term and throws it away (equivalent to the underscore
variable in Erlang patterns).

1 Matches any term and saves it as the return value (there must be
exactly one such field in each pattern).

<Atom> Matches only the atom <Atom>.

Table 4.3: Description of custom match specifications

Unions may also be present in the return type of an API function, in most cases between
a ‘success’ value and a ‘failure’ value, both of which are either an atom or a tagged tuple
(a common return format for API functions is: {‘ok’,…} | ‘error’). In the case of unions
it’s not enough to just detect the choice that contains an ADT reference, we must also
make sure that its structure is unique among all the choices of the union. If that is not the
case, i.e. some other choice has a similar format with the selected choice, we cannot be
certain if a term returned by the function indeed contains an ADT or not. See Table 4.4
for a description of the distinguishability criteria we apply. We only check the top-level
type constructors of a union’s choices to determine whether they are distinguishable, but
this is sufficient for most uses.

To illustrate this process, consider the stack ADT: Of all the functions in its defining
module, only ‘new/0’, ‘push/2’, ‘pop/1’ and ‘safe_pop/1’ contain a reference to the opaque
type in the range of their specs. Functions ‘new/0’ and ‘push/2’ return a clean ADT
instance, therefore require no extra processing. ‘pop/1’ always returns an untagged two-

4.4 Handling Opaque Datatypes 57

element tuple with an ADT instance as its second element. Thus, we would need to match
its return value against the pattern ‘{0,1}’. ‘safe_pop/1’ will either return an atom
(‘error’) or a three-element tuple tagged ‘ok’, with an ADT instance as its third element.
Of these possible return values, only the second contains an ADT instance, which we can
extract by matching against the pattern ‘{‘ok’,0,1}’. Since the other return value is not a
tuple, it can never match against any tuple pattern, therefore we can safely use the pattern
‘{‘ok’,0,1}’ to match against any value returned by this function.

Selected choice Is it distinguishable?

ADT reference No (we cannot count on the structure of an opaque term, thus we
can’t distinguish it from other terms)

Tuple
Only if all other choices will definitely not match this choice’s pattern
(i.e., their instances are never tuples of the same size and with the
same tags as the selected choice)

List
Only if all other choices will definitely raise an exception if passed to
erlang:hd/1 (e.g., ‘tuple()’ will surely fail, as will ‘[]’, but we can’t be
sure about ‘term()’)

Union Only if the selected choice in the nested union is distinguishable from
all other choices of both the nested and the outer union.

Table 4.4: Choice distinguishability criteria in unions

4.4.2 Constructing a Symbolic Generator

After we have collected all the API functions that we can use, along with a way to extract
an ADT instance from each function’s return value, we need to combine them into a
symbolic generator. We observe at this point that the process by which one chooses which
functions will constitute the base case of such a generator is not very different from the
way we select the base case for a recursive type: We pick those functions that don’t require
another ADT instance to operate on, i.e. those functions that don’t have a reference to
the ADT’s opaque type in their domain. This is similar to how a recursive type’s base
case is formed by combining all the choices that don’t reference the type. Inspired by this
observation, we attempt to find a way to reuse PropEr’s recursive type handler in the
creation of symbolic generators.

It is actually almost trivial to accurately express the format of a symbolic call to a 0-arity
function using the Erlang type system. This type, for example:

-type erlang_now_symb() :: {‘$call’, erlang, now, []}

describes a symbolic call to the function erlang:now/0. This technique, however, cannot be
extended to functions of arity 1+, because the Erlang type language doesn’t have support
for fixed-length lists. To remedy this, we have created our own fixed_list type, which
PropEr recognizes as a built-in (users don’t have access to this type; it only makes sense
in the context of PropEr’s type converter). The type conversion system handles this type
exactly like a tuple, but wraps its elements in a ‘fixed_list/1’ PropEr type instead of a
‘tuple/1’. Using this type, we can accurately describe any symbolic call.

58 Chapter 4. Utilizing Types in Testing

Therefore, we replace each ADT’s opaque declaration with a new (simple ‘-type’) declara-
tion which lists all the symbolic calls that can produce it as choices in a top level union4.
The argument types for each function’s symbolic call are simply copied from its spec and
wrapped in a fixed_list type. If a function doesn’t return an ADT instance directly, we
have to wrap the base call with symbolic calls to all the functions needed to extract the
actual instance. Listing 4.8 shows what the symbolic type generated for the stack ADT
would look like in source form (in this listing, the delimiters ‘<’ and ‘>’ are used in place
of our fixed_list type).

� �
1 -type stack(T) :: {‘$call’,stack,new,<>}
2 | {‘$call’,stack,push,<T,stack(T)>}
3 | {‘$call’,proper_typeserver,match,
4 <{0,1},{‘$call’,stack,pop,<stack(T)>}>}
5 | {‘$call’,proper_typeserver,match,
6 <{ok,0,1},{‘$call’,stack,safe_pop,<stack(T)>}>}.
7
8 %---
9

10 % Examples of valid instances for stack(atom()):
11 {‘$call’,stack,new,[]}
12 {‘$call’,stack,push,[foo,{‘$call’,stack,push,[bar,{‘$call’,stack,new,[]}]}]}
13 {‘$call’,proper_typeserver,match,
14 [{ok,0,1},{‘$call’,stack,safe_pop,
15 [{‘$call’,stack,push,[baz,{‘$call’,stack,new,[]}]}]}]}� �

Listing 4.8: Inferred type specification for symbolic stack instances, with examples

This process is a bit more complicated when the ADT in question is parametric. First
of all, we can only work with generic instances of the ADT, therefore every reference to
the opaque type should have universally quantified variables as parameters5. Separate
instances of the same ADT are allowed to have different variables in the same argument
position, but this cannot introduce an implicit binding on the ADT’s parameters, as in
this spec:

-spec weird(dict(T, S),dict(S, T)) → boolean().

Similarly, an ADT shouldn’t contain duplicate parameters. Any spec that violates these
constraints is automatically rejected. Additionally, we have to rewrite the specs’ domains
so that they make sense in the RHS of the ADT’s symbolic type declaration: We update
each spec’s variables in such a way that all ADT instances in all specs have the same
parameters as the LHS of the original opaque declaration. We also apply all subtype
constraints to each spec (by replacing each bound variable with its supertype) and replace
any remaining (unbound) variables with ‘any()’.

At this point, we are done; the task of turning the symbolic type declaration into a recursive
generator is left to the type conversion system. The resulting generator will be wrapped
with a ‘well_defined/1’ attribute (see Section 3.2.5), therefore every produced symbolic
instance is guaranteed to evaluate successfully. Both illegal, exception-throwing uses of
API functions (e.g. calling ‘stack:pop/1’ on an empty stack, which throws a ‘stack_empty’

4If we could find no suitable API functions for some opaque type, we have no choice but to treat it like an
ordinary type.

5If this requirement would result in singleton variables, as in the spec for stack:new/0, users should use
variable names that begin with an underscore.

4.5 Automatic Spec Testing 59

exception) and unexpected ‘failure’ returns (e.g. calling ‘stack:safe_pop/1’ on an empty
stack, which returns ‘error’, while we were expecting ‘{ok,_,S}’) are avoided. The pro-
duced symbolic calls will be in ‘$call’ format, so they will be evaluated automatically.

4.5 Automatic Spec Testing

Having implemented a fairly robust type translation system, we are ready to turn our
attention to the other component of the Erlang type system, function signatures. Since
function specs are essentially a form of lightweight specification (“this function, if called
with arguments of types A1, . . . , AN , will return a value of type Ret”), it should be easy
to convert them into testable properties. We have implemented a prototype for a system
which builds on this idea to enable the automatic testing of functions, based solely on
information extracted from their signatures. At its current form, our implementation tests
an exported function against its spec by calling it with increasingly complex valid inputs
(as specified in the spec’s domain) and checking that no unexpected value (according to
the spec’s range) is returned.

4.5.1 Generating Valid Inputs

To produce valid inputs for the function under test, we simply extract the domain type
from its spec, convert it to PropEr’s type format and pass it to the random instance
generator. Specs that contain variables, however, require an extra pre-processing step:
every bound variable is replaced by its supertype and all remaining (unbound) variables
are converted to ‘any()’. Currently, we only test the first clause of multi-clause specs, but
this can easily be extended to testing each clause separately.

4.5.2 Checking the Return Value

If the function under test returns normally for a random input, we should check that the
returned value is in accordance with the function’s spec. Essentially, we need to write
a component for instance checking against Erlang types. The straight-forward way to
achieve this is through synchronized recursion in the term’s and the type’s structures.
Most of the type tests we perform while recursing are self-explanatory, with only a few
cases requiring special attention:

• Record expressions are expanded into tuple types. Each field’s type, if not overridden
in the reference, is copied from the record’s original definition.

• References to user-defined (local or remote) types are expanded using the correspond-
ing type definitions. For opaque types, we obviously use their original declaration
and not the symbolic one that PropEr created. Testing API functions, however,
would be much more effective if, instead of just checking a returned ADT instance
against its internal representation format, we also tested its invariants, utilizing a
user-provided invariants checking function.

60 Chapter 4. Utilizing Types in Testing

• If a user-defined type is parametric, we first replace every variable in its definition
with the value of the corresponding actual parameter before recursing into its struc-
ture. In the case of parametric remote types, we have to annotate the parameters
with their originating module before copying them into the definition, because they
may not make sense in the context of the remote type’s defining module.

• Recursing into any type structure requires that we consume some bit of the input
term (e.g., to recurse into a list we have to consume the list structure containing the
elements, to recurse into a tuple we have to consume the tuple structure encasing the
field values), therefore the process is guaranteed to terminate (since Erlang terms are
of finite size). The exception to this is unions and references to user-defined types
(record expressions are expanded into tuples, therefore pose no risk). This, coupled
with the type system’s support for recursive types, has the potential to create an
infinite loop in our instance-checker. The problem arises when some spec’s range
contains a reference to a (directly or indirectly) recursive type that contains at least
one recursion path of just unions and type references, like in these examples:

-type a() :: atom() | a().
-type b() :: float() | c().
-type c() :: integer() | b().
-type d(T) :: T | d({‘bar’, T}).

By keeping a recursion stack, we are able to detect such types and stop the process
early. We don’t consider this to be a serious limitation of our tool, since such types
are rare in practice and can easily be translated into an acceptable form.

• We cannot safely check either the argument types or the return type of funs. There-
fore, we can do little to verify that returned funs abide by their specification beyond
checking their arity.

Abnormal function returns also need to be classified. Due to the lack of a standard way to
specify exceptional function behaviour in the current form of the Erlang type system, we
decided to be conservative and accept any thrown exception (plus ‘badarg’ errors, which
are commonly used to signify an illegal input) as a normal return.

Chapter 5

Practical Evaluation

In this chapter, we summarize the results of our experiments on using PropEr as an
automatic spec tester, and comment on them.

5.1 Context

PropEr’s source code is well-documented, contains specs for all functions, and is essentially
stateless, therefore it was trivial to adapt it so that it could test itself. Specifically, we have
used proper:check_spec/1 to test the main PropEr function, proper:check/1. Additionally,
we have used PropEr to test the specs of various modules from Erlang’s standard library.
Not all modules could be tested: modules that implement servers, contain impure code or
handle stateful resources (e.g. processes, files, databases) are out of the scope of PropEr’s
automatic spec tester at its current form. Also, we couldn’t test modules that manipulate
Erlang code in AST form, because the AST format is currently unspecified type-wise.
Apart from these applications, most of the modules from the public Erlang code base
either didn’t contain specs, or were unfit for automatic spec testing (most often, their
operation depended on some kind of state that couldn’t be described using only specs).

5.2 Self-Testing

5.2.1 Results Summary

Through self-testing, we were able to uncover these errors in our implementation:

• ?TIMEOUT wrappers with failing internal properties would cause PropEr to crash.
To understand why this happened, we need to know how ?TIMEOUT is imple-
mented: When a ?TIMEOUT(Time,Inner_Prop) wrapper is reached, PropEr spawns
a child process, which is then tasked with carrying out the testing of Inner_Prop.
This child is expected to return the result (via a message) within Time milliseconds,
or else a timeout error occurs. In our initial implementation, the spawned process
would try to read some values stored in the process dictionary1 of its parent, but

1Each Erlang process has a private key-value store, called the process dictionary, which can be accessed
in an impure way.

61

62 Chapter 5. Practical Evaluation

only if the internal test failed (such a property was never exercised in our unit tests).
To fix this error, we made the spawning process copy the contents of its process
dictionary to every spawned child.

• Some unusual wrapper combinations (namely, ?FORALLs with branching internal
properties, where each branch contained a different number of stats-collecting calls),
that both the specs and the program documentation allowed, weren’t handled prop-
erly.

• Most union- and wunion-related functions were underspecified: their specs allowed
for an empty list of choices.

5.2.2 Conclusions

From our overall experience of using PropEr for self-testing purposes, we have arrived to
the following conclusions:

• Erlang’s type language is often adequate for accurately describing a function’s input
domain. However, users must be careful not to underspecify when writing specs that
they wish to test automatically. Overapproximating a function signature is fine for
the purposes of finding type errors, but may cause PropEr to test the function with
inputs it’s not supposed to handle.

• Function specifications are a rather simple form of specification: they cannot be
expected to discover subtle errors, nor can they be used to test (among others)
inter-functional properties. Therefore, at their current form, specs cannot replace
user-written properties.

• Users may need to alter the syntax of their type declarations to make them better
suited to the role of term generator specifications, e.g. by adding redundant choices
or writing the simplest case first in unions (see also Section 4.2.2).

• PropEr’s special handling of opaque types is very practical for spec testing, but there
should also be a way for users to exclude one or more API functions from symbolic
generators (e.g. because these functions are expensive to run).

• A more powerful system for the outputting and shrinking of generated functions
could be very useful for certain use cases.

5.3 Standard Library Testing

We used PropEr to test some modules from Erlang’s standard library, as it was on the
latest major release of the Erlang platform (R14B).

5.3.1 Results Summary

Most of the modules we tested contained functions whose input format could not be
accurately represented using just the Erlang type language. Their specs would over-
approximate their real domain, causing PropEr to generate illegal input values, which

5.3 Standard Library Testing 63

most functions didn’t handle gracefully. As an example, consider the lists:zip/2 function,
whose documentation states that it only accepts two lists of the same length. The closest
a spec can get to specifying the actual behaviour of this function is this:

-spec zip([A], [B]) → [{A,B}].

The last spec also allows lists of different lenghts, which cause lists:zip/2 to crash. Also,
consider the functions inside the calendar module, which accept dates in the format:

{Day :: 1..31, Month :: 1..12, Y ear :: non_neg_integer()}

This specification allows for some illegal date declarations, like {31,4,2000} (April only
has 30 days), which will cause any date-handling function from the calendar module to
crash.

The real errors we found were mostly errors in specs (we weren’t really expecting to find
errors in the code, since the standard library is one of the most well-tested applications in
Erlang/OTP):

filename:join/1, gb_sets:intersection/1, ordsets:intersection/1:
These functions’ specs incorrectly stated that they could also accept the empty list.

gb_sets:next/1, gb_trees:next/1:
These functions’ specs incorrectly stated that they would accept any term, while
they can really only work with an ‘iterator()’ data type, which actually has an
undocumented representation, and therefore should have been declared as an opaque
type.

lists:merge/1, lists:umerge/1:
These functions’ specs read ([T]) → [T] instead of the correct ([[T]]) → [T].

orddict:filter/2:
This function’s spec stated that the predicate used to filter the dictionary could
return ‘any()’, whereas only ‘boolean()’ is actually acceptable.

5.3.2 Conclusions

After using PropEr to automatically test specs from modules of the standard library, we
have the following observations to make:

• As mentioned above, the Erlang type annotation language is not always enough to
accurately specify a function’s input domain.

• Many kinds of functions could be tested much more efficiently if their specs contained
exceptional behaviour information. For example, in the documentation page for the
queue module it is noted that many of the module’s functions throw an ‘error:empty’
exception if called with an empty queue. PropEr, however, currently has no way of
knowing this, therefore considers the empty queue as a failure-inducing input for all
of these functions.

64 Chapter 5. Practical Evaluation

• Deeply nested symbolic instances (of size 40 and over) tend to significantly slow
down the testing process, because they consume a lot of memory and take long to
evaluate.

• The ‘any()’ predefined type, while common is specs, is not well-suited to testing: It is
very expensive (both in terms of processing time and in terms of consumed memory)
to produce and to shrink random structured terms (producing such instances in
large quantities often resulted in out-of-memory errors). Using a smaller subset of
values (e.g. integers) is almost always just as effective. Therefore, we should either
streamline the handling of ‘any()’, or stop using it altogether while spec testing.

Chapter 6

Related Work

In this chapter, we review a number of techniques related to automated, specification-
based testing. See also the recent paper by Hierons et al. [44] for a more comprehensive
survey.

6.1 Oracle Generation

A testing oracle, i.e. a mechanism for determining whether the program has passed or failed
a test, can often be derived from software specifications in a fully automatic manner. In
this section, we give a brief overview of the major oracle generation techniques found in
the literature. See the paper by Baresi and Young [9] for a more comprehensive survey.

Contract-Based Specifications Specification languages belonging to this category in-
clude JML, Object-Z, Eiffel and others. These languages follow a “Design by Contract”™
approach: functions are specified using preconditions, postconditions, invariants and as-
sertions. See the paper by Richardson et al. [85] for an overview of the theory behind
automated testing techniques for such languages.

The most common form of oracle derived from contract-based specifications is the “passive”
oracle, i.e. one that simply checks the behaviour of a program without reproducing it
[19, 83, 69, 82, 51, 24]. Assertion, invariant and postcondition checks serve as a (partial)
oracle, which can then reused by various testing tools (e.g. the JML-based testing tools
JML-JUnit [22], Jartege [79], Korat [14], JET [23], JML-TT [13] and JMLAutoTest [96]
all use the same passive oracle).

Another, less common, type of oracle that can be derived from contract-based specifications
is the “active oracle”, i.e. one that mimics the behaviour of the program under test. Active
oracles are essentially alternative implementations: to test a program against an active
oracle, a testing tool would execute the two implementations in parallel and verify that
their behaviour is always identical. An active oracle may be produced either by generating
executable code from the specification, or, as in the case of jmle [57], by executing the
specification itself symbolically, with the help of a constraint solver.

65

66 Chapter 6. Related Work

Model-Based Specifications Reactive systems (i.e., systems that continuously inter-
act with their environment through events) are typically specified using abstract models.
State transition systems (FSMs, EFSMs, labeled transition systems, flow charts, Markov
chains etc.) representing the possible configurations of the system under test are most often
used as models [11, 18, 33, 8]. Executable paths through such a state-based specification
can then be translated into test cases [91, 76, 87, 31]. It is also feasible to animate the spec-
ification (translate the specification into an implementation) [64, 73, 88, 74, 54, 68]. The
resulting program can then be used as an active oracle, as a prototype implementation,
or as a way to test the specification itself. See the papers by El-Far and Whittaker [34],
Boberg [12] and Utting et al. [92] for overviews of model-based testing.

Operational Profile Extraction Some testing tools utilize reverse engineering tech-
niques, such as symbolic execution [58] or runtime invariant detection [80], to extract an
operational profile of the program directly from the source code. This profile functions
like an (approximate) specification of the program and can be used in the same manner
as a user-provided one.

Algebraic Specifications Algebraic specification languages describe software by mak-
ing formal statements, called axioms, about relationships among instances of data types
and the functions that operate on them. A testing tool can use such specifications to
derive a test oracle [4, 37] (active oracles are relatively easy to produce), a test case gen-
erator [4] (inputs are essentially nested symbolic calls), or both [48]. See the thesis of P.
Machado [65] for a more in-depth presentation of algebraic specification testing.

6.2 Test Data Generation

Another part of the testing process that can easily be automated is the creation of test
inputs. In this section, we briefly introduce various families of test generation techniques
proposed in the literature. See the papers by Edvardsson [32] and Rushby [86] for more
comprehensive reviews.

Random Testing All of the testing tools mentioned in Chapter 3 (including PropEr), as
well as many others (e.g. JCrasher [27], Jartege [79]) generate test inputs in a completely
random manner. While this approach has been proven effective in practice, it suffers from a
few inherent shortcomings: it can be almost impossible to randomly produce instances that
satisfy a strict precondition, and random inputs are not guaranteed to achieve sufficient
code coverage of the program under test. To counter these issues, random testing tools use
a variety of approaches, such as allowing users to assign weights to constructors, specify a
size distribution for the produced inputs, or even write their own, custom data generators.

Incremental Generation A popular approach among automated testing tools for object-
oriented languages (e.g. RANDOOP [81], JET [23] and AutoTest [24]) is the incremental
generation of objects. The tool maintains an object pool, which is initially seeded with a
few small values (either provided by the user or produced randomly). To construct a new
object, the tool will randomly choose a method from the class under test and call it with

6.2 Test Data Generation 67

arguments randomly selected from the object pool (only objects that satisfy the method’s
precondition can be used). Provided that the method returns normally and the resulting
object doesn’t violate any postcondition, the new object is inserted into the pool. In order
to suppress redundancy among the successfully built call sequences, many of these tools
employ some king of equivalence checking: newly constructed objects that are found to be
isomorphic to some older input are discarded.

Exhaustive Testing Most programs are designed to accept an infinite number of pos-
sible inputs, therefore complete coverage of their input space is impossible. However,
exhaustive testing can be achieved as long as we confine ourselves to inputs up to a cer-
tain size. This method is based on the “regularity hypothesis”: we expect that, if the
implementation works correctly for all tests up to size k, it will also work for all tests of
size greater than k.

The Korat tool [14] follows this approach when generating instances of structured objects:
the size of an input is considered to be the number of its internal nodes. The Symstra
tool [95] also uses bounded exhaustive generation, but produces instances through a series
of API calls, therefore considers the size of an instance to be the number of calls made to
construct it. Both of these tools avoid the generation of isomorphic (equivalent) objects,
so as to reduce the number of produced test inputs. The SITE tool [48] produces all
combinations of ADT API calls up to a certain nesting depth.

To further reduce the number of produced tests, testing tools can utilize a pairwise argu-
ment generation technique [28]: Testers supply a number of values for each input argument
and the tool, instead of trying all V als1 · V als2 · . . . · V alsn combinations, produces just
enough input vectors to ensure that, for all

(
n
2

)
pairs of arguments, all V alsi · V alsj

combinations of values appear in at least one test.

Domain Testing Domain testing [47, 59] works by partitioning the input space (do-
main) of a program into classes of equivalence (sub-domains): all the inputs in a sub-
domain (should) cause the program to execute in a similar way. These partitions are
usually derived solely from the specification of the program, by parsing the input type
declarations and considering them together with the preconditions (after transforming
them to a suitable form, such as the disjunctive normal form). Domain information can
also be extracted from the source code, e.g. through symbolic execution. Each partition
should be covered by at least one test, with input values on and around the boundaries
taking precedence over random values.

Domain testing works on the basis of two hypotheses: The first hypothesis states that
the program behaves uniformly in each sub-domain. Therefore, if it works correctly (or
fails) for some input in the sub-domain, then it will work correctly (or fail) for all inputs
in that sub-domain. The second hypothesis states that faults tend to cluster around the
boundaries of domain partitions.

Special Values Testing This strategy involves the testing of programs on input values
that have special properties, because such values, experience indicates, are likely to trigger
faults. This approach has little theoretical basis and requires manual tester intervention,
therefore it is rarely considered by researchers on automated testing techniques.

68 Chapter 6. Related Work

Symbolic Execution and Constraint Solving The idea of using symbolic execution
to derive test cases dates back from the 1970’s [15, 26, 84], but this research area is still
active [41, 71]. Testing tools that follow this approach do not execute the program at
all during test case generation. Instead, they work on the source code itself, by selecting
a code path and following it while recording the constraints that input variables will
have to satisfy for a program execution to actually follow that path. Solutions to these
constraints, which can be achieved through the use of Boolean solvers (e.g. SAT solvers)
or by numerical analysis (e.g. Gaussian elimination), represent the test data.

The main limitations of such techniques stem from their use of symbolic execution: They
cannot easily process programs that contain recursion, dynamic data structures, array
indices which depend on input data, pointer variables and some loop structures. Also, the
problem of solving arbitrary constraint systems is known to be intractable. Combining
symbolic with actual execution [39] can help to ameliorate this situation.

Constraint solving techniques can also be applied on specification preconditions [20], in
cases where they contain complex predicate expressions.

Model Checker-Assisted Generation Model checking normally involves processing
the model of a software system exhaustively, to verify that some property holds for any
implementation of that model. However, model checkers, due to their ability to produce
counterexamples for (most) falsified properties, have been used extensively to support
testing [93, 38, 43, 45, 17, 16, 35, 50]. Most uses of model checkers for testing purposes
follow this pattern:

1. A model of the program under test is provided by the user or extracted from a
suitable specification.

2. A set of test purposes (e.g. a set of code paths to cover) is formulated (manually
or automatically) as a set of temporal properties in an appropriate language (e.g.
LTL).

3. The properties are negated.

4. The model checker is asked to prove the validity of each negated property.

5. The model checker finds a counterexample for each negated property (assuming that
the corresponding test purpose is satisfiable, e.g. the desired path it traversable).

6. Each (abstract) counterexample is translated to a (concrete) test input.

Search-Based Generation Combinatorial search-based optimization algorithms, such
as local search [56], simulated annealing [90] and genetic algorithms [21], may be employed
by the input generator. The fitness function that such algorithms attempt to minimize
(or maximize) should be defined in such a manner that it favors inputs that possess a
desirable property:

• they exercise a particular (unexplored) program path
• they lie on the boundaries of an input partition
• they satisfy a precondition

6.3 Test Set Adequacy Evaluation 69

• they fail a postcondition
• they cause the program to exhibit incorrect or dangerous behaviour (e.g. crash or

access memory illegally)
• they cause the program to execute for a long period of time
• …

See the paper by McMinn [70] for a recent survey on the use of such search-based techniques
for automated testing purposes.

Fuzz Testing Fuzz testing (or fuzzing) [72] is a black-box testing technique that involves
feeding unexpected, random, or randomly mutated well-formed inputs to a program, in an
attempt to trigger crashes. Because it can essentially only verify that a system can handle
unexpected input gracefully, fuzz testing is mostly useful for uncovering security bugs.

The simplest fuzzers treat the input simply as a series of bits. This approach makes
it hard to produce test cases that resemble valid data enough to reach the inner parts
of the program. The most successful fuzzers have detailed understanding of the format
or protocol being tested [52]. In order to produce an input, they walk through the input
format specification and add a small number of anomalies to the data contents, structures,
messages or sequences, thus producing inputs that are “almost valid”.

White-box techniques, such as source-level tracing [36] and symbolic execution [40], can
be combined with input mutation to more effectively guide the fuzzing process.

6.3 Test Set Adequacy Evaluation

Many techniques have been developed for estimating the completeness of a test suite. Since
most testing procedures do not test programs exhaustively, there is always a possibility
that an error has been overlooked, therefore any test set, regardless of how “complete” it
is estimated to be, can never verify the correctness of a program. Having a measure of
adequacy, however, allows us to set a target for the testing effort, and thus know when it
it relatively safe to stop. Testing tools can also use this information to guide the input
generator.

At its current form, PropEr doesn’t include support for any test set adequacy metric.

Source Code Coverage Criteria A common criterion used to evaluate test sets is
that of code coverage: a set of test cases should exercise as great a portion of the program
as possible. Various concrete metrics have been proposed as a measure of code coverage
(the paper by Zhu et al. [97] gives a comprehensive review):

• Control flow based:
Statement Coverage

Every statement of the program has to be executed at least once.
Branch Coverage

Every possible outcome of all decisions must be exercised at least once.

70 Chapter 6. Related Work

Path Coverage
Every possible path through the code has to be executed.

…
• Data flow based:
All Definitions Coverage

For each value-binding statement of each variable declared in the program, at
least one definition-use path1 starting at that definition must be executed.

All Uses Coverage
For each value-binding statement of each variable declared in the program, all
the definition-use paths starting at that definition must be executed.

…

Specification Coverage Criteria Black-box testing tools may also include a way of
measuring the completeness of a test set derived solely from the specification (rather than
the source code) of the program [78, 77, 60, 46]. Some of the most common specification
coverage criteria, targeted at model-based specifications, include state coverage, transition
coverage and path coverage.

Runtime invariant detection techniques can also be used to reason about test suite ade-
quacy [42]: We consider an additional test case as redundant when adding it to the test
suite doesn’t affect the set of invariants inferred from the execution of all tests.

Mutation Analysis Through mutation analysis [29], test suites are evaluated on their
ability to distinguish the original program from slightly modified versions. Each such
version, called a “mutant”, is derived from the original by deliberately inserting one fault
somewhere in the code. A fault injected by the mutator might be the change of some
constant value (e.g. 0 to 1), the swapping of an operator with a different one (e.g. < to
>) etc. If at least one test case from a test suite causes the mutant to exhibit different
(observable) behaviour than the original, then the test suite is said to “kill” the mutant. A
test suite is assigned a mutation score according to the percentage of mutants it managed
to kill. That score is an approximation of the relative adequacy of the test data set (live
mutants point out inadequacies in the test suite).

Mutation analysis works on the basis of two hypotheses: The “competent programmer”
hypothesis states that programmers write programs that are almost perfect, therefore
program faults are usually syntactically small. Mutants, then, simulate the likely effects
of real faults, thus a test set that is efficient at killing mutants will also be good at
uncovering real faults. The “coupling” hypothesis states that, should there be any big and
dramatic effects that arise from bugs in the software, then these will be closely coupled to
small and simple bugs. Based on these hypotheses, proponents of mutation analysis claim
that, if the program contains a fault, it is likely that there is a mutant which can only be
killed by a test case that also reveals the fault.

Black-box testing tools can also employ mutation analysis [3]. In the case of such tools,
mutations are applied to the specification instead of the program. A model-based specifi-
cation, for example, can be mutated by adding, moving or deleting states and transitions,

1A definition-use path (du-path) for a variable x inside a program P is a series of statements (extracted
from some execution of P) that starts at some binding of a value to x and ends at the first use of that value.

6.3 Test Set Adequacy Evaluation 71

by altering preconditions etc. A model checker can then be asked to verify that the mu-
tated model is equivalent to the original one. If the two models are distinguishable, the
model checker will produce a counterexample that proves it. That counterexample can
then be translated into a concrete test case.

Mutation analysis can also be used to guide the generation of new test cases. The Godzilla
tool [30] utilizes symbolic execution to derive constraints on the input values that can
distinguish a specific mutant from the original. A constraint solver is then used to derive
a concrete test case that will kill the mutant.

Chapter 7

Conclusion

7.1 Concluding Remarks

We have presented PropEr, a property-based testing tool that can work with type infor-
mation directly, thus liberating users from having to write redundant term generators.
We have also described our extensions to that tool, which allow it to handle opaque data
types properly, and test functions automatically based solely on their specifications. We
have tested the effectiveness of our implementation by spec testing PropEr’s own code,
as well as various modules from the standard Erlang library. Based on the results of this
testing, we conclude that this direction shows promise, but our approach, due in part to
expressivity problems in the language of specs, suffers from a few inherent limitations,
that currently make our tool inapplicable to certain categories of functions. As part of our
future work in this area, we intend to explore possible solutions to some of these issues.

7.2 Future Work

The first extension we need to make concerns PropEr’s handling of exceptional function
returns. Users need to have some standard way of declaring what exceptions a function is
expected to throw, and perhaps under what circumstances. Apart from their immediate
usability in the context of automatic spec testing, such declarations will also be valuable
as program documentation, and might be useful to static analysis tools like Dialyzer.

To make PropEr usable for a wider variety of functions, we need to introduce a way
for users to more accurately specify the input domain of a function. We are currently
considering the addition of precondition declarations to function domains, along with
an efficient method of producing satisfying instances. Related to this is the addition of
support for postcondition declarations to range types, which PropEr could check against
every returned value.

Aside from these more pressing concerns, we should also take steps to improve the memory
requirements and shrinking behaviour of generated terms, especially symbolic instances
and instances of the ‘any()’ type. As a temporary measure, we could try introducing an
upper limit to the value of the ‘size’ parameter. It may also be worth developing a more
powerful system for the outputting and shrinking of generated functions.

73

74 Chapter 7. Conclusion

We would also like to explore the possibility of extending our analysis to more diverse
directions. At this point, we are considering extending our methodology to the testing of
stateful or impure code. It would also be interesting to see if we can somehow make use
of invariant detection tools to augment our fault detection strategy.

Bibliography

[1] EDoc User’s Guide. http://www.erlang.org/doc/apps/edoc/users_guide.html.

[2] EUnit: a Lightweight Unit Testing Framework for Erlang. http://erlang.org/doc/
apps/eunit/users_guide.html.

[3] P. E. Ammann, P. E. Black, and W. Majurski. Using Model Checking to Generate
Tests from Specifications. In Proceedings of the 1998 International Conference on
Formal Engineering Methods, page 46. IEEE Computer Society, 1998.

[4] S. Antoy and D. Hamlety. Automatically Checking an Implementation against Its
Formal Specification. IEEE Transactions on Software Engineering, 26(1):55–69, Jan-
uary 2000.

[5] J. Armstrong. Programming Erlang: Software for a Concurrent World. The Pragmatic
Bookshelf, 2007.

[6] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Programming
in Erlang. Prentice Hall Europe, second edition, 1996.

[7] T. Arts, L. M. Castro, and J. Hughes. Testing Erlang Data Types with Quviq
Quickcheck. In Proceedings of the 7th ACM SIGPLAN Workshop on Erlang, pages
1–8. ACM, 2008.

[8] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing Telecoms Software with
Quviq QuickCheck. In Proceedings of the 2006 ACM SIGPLAN Workshop on Erlang,
pages 2–10. ACM, 2006.

[9] L. Baresi and M. Young. Test Oracles. Department of Computer and Information
Science, University of Oregon, CIS-TR-01-02, August 2001.

[10] K. Beck. Kent Beck’s Guide to Better Smalltalk, chapter 30: “Simple Smalltalk
Testing”. Cambridge University Press, December 1998.

[11] J. Blom and B. Jonsson. Automated Test Generation for Industrial Erlang Applica-
tions. In Proceedings of the 2003 ACM SIGPLAN Workshop on Erlang, pages 8–14.
ACM, 2003.

[12] J. Boberg. Early Fault Detection with Model-Based Testing. In Proceedings of the
7th ACM SIGPLAN Workshop on Erlang, pages 9–20. ACM, 2008.

[13] F. Bouquet, F. Dadeau, and B. Legeard. Automated Boundary Test Generation from
JML Specifications. In J. Misra, T. Nipkow, and E. Sekerinski, editors, FM 2006:
Formal Methods, volume 4085 of Lecture Notes in Computer Science, pages 428–443.
Springer, Berlin / Heidelberg, 2006.

75

http://www.erlang.org/doc/apps/edoc/users_guide.html
http://erlang.org/doc/apps/eunit/users_guide.html
http://erlang.org/doc/apps/eunit/users_guide.html

76 Bibliography

[14] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based on Java
Predicates. SIGSOFT Software Engineering Notes, 27(4):123–133, July 2002.

[15] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT–A Formal System for Testing
and Debugging Programs by Symbolic Execution. In Proceedings of the International
Conference on Reliable Software, pages 234–245. ACM, 1975.

[16] J. R. Callahan, S. M. Easterbrook, and T. L. Montgomery. Generating Test Oracles
via Model Checking. Technical Report NASA-IVV-98-015, NASA/WVU Software
Research Lab, Fairmont, WV, 1998.

[17] J. R. Callahan, F. Schneider, and S. M. Easterbrook. Automated Software Testing
Using Model-Checking. In Proceedings of the 1996 SPIN Workshop, volume 353, 1996.

[18] D. Carrington, I. MacColl, J. McDonald, L. Murray, and P. Strooper. From Object-Z
Specifications to ClassBench Test Suites. Software Testing, Verification and Reliabil-
ity, 10(2):111–137, 2000.

[19] Y. Cheon. A Runtime Assertion Checker for the Java Modeling Language. PhD
thesis, Department of Computer Science, Iowa State University, April 2003.

[20] Y. Cheon, A. Cortes, and G. T. Leavens. Integrating Random Testing with Con-
straints for Improved Efficiency and Diversity. In Proceedings of the 20th International
Conference on Software Engineering and Knowledge Engineering, July 2008.

[21] Y. Cheon, M. Y. Kim, and A. Perumandla. A Complete Automation of Unit Testing
for Java Programs. In Proceedings of the 2005 International Conference on Software
Engineering Research and Practice (SERP), pages 290–295. CSREA Press, June 2005.

[22] Y. Cheon and G. T. Leavens. A Simple and Practical Approach to Unit Testing:
The JML and JUnit Way. In B. Magnusson, editor, ECOOP 2002 – Object-Oriented
Programming, volume 2374 of Lecture Notes in Computer Science, pages 1789–1901.
Springer, Berlin / Heidelberg, 2006.

[23] Y. Cheon and C. E. Rubio-Medrano. Random Test Data Generation for Java Classes
Annotated with JML Specifications. In Proceedings of the 2007 International Con-
ference on Software Engineering Research and Practice, pages 385–392, June 2007.

[24] I. Ciupa and A. Leitner. Automatic Testing Based on Design by Contract. In
Proceedings of the 6th Annual International Conference on Object-Oriented and
Internet-based Technologies, Concepts, and Applications for a Networked World, pages
545–557, 2005.

[25] K. Claessen and J. Hughes. QuickCheck: a Lightweight Tool for Random Testing of
Haskell Programs. In Proceedings of the 5th ACM SIGPLAN International Conference
on Functional Programming, pages 268–279. ACM, 2000.

[26] L. A. Clarke. A System to Generate Test Data and Symbolically Execute Programs.
IEEE Transactions on Software Engineering, 2:215–222, 1976.

[27] C. Csallner and Y. Smaragdakis. JCrasher: An Automatic Robustness Tester for
Java. Software: Practice and Experience, 34(11):1025–1050, 2004.

Bibliography 77

[28] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and
B. M. Horowitz. Model-Based Testing in Practice. In Proceedings of the 1999 Inter-
national Conference on Software Engineering (ICSE), page 285. ACM, May 1999.

[29] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on Test Data Selection: Help
for the Practicing Programmer. Computer, 11(4):34–41, April 1978.

[30] R. A. DeMillo and J. Offutt. Constraint-Based Automatic Test Data Generation.
IEEE Transactions on Software Engineering, 17(9):900–910, September 1991.

[31] J. Dick and A. Faivre. Automating the Generation and Sequencing of Test Cases
from Model-Based Specifications. In J. Woodcock and P. Larsen, editors, FME ’93:
Industrial-Strength Formal Methods, volume 670 of Lecture Notes in Computer Sci-
ence, pages 268–284. Springer, Berlin / Heidelberg, 1993.

[32] J. Edvardsson. A Survey on Automatic Test Data Generation. In Proceedings of the
2nd Conference on Computer Science and Engineering, pages 21–28. ECSEL, October
1999.

[33] S. H. Edwards. Black-Box Testing Using Flowgraphs: An Experimental Assessment
of Effectiveness and Automation Potential. Software Testing, Verification and Relia-
bility, 10(4):249–262, 2000.

[34] I. K. El-Far and J. A. Whittaker. Model-based Software Testing. Encyclopedia on
Software Engineering, 2001.

[35] A. Engels, L. Feijs, and S. Mauw. Test Generation for Intelligent Networks Using
Model Checking. In E. Brinksma, editor, Tools and Algorithms for the Construction
and Analysis of Systems, volume 1217 of Lecture Notes in Computer Science, pages
384–398. Springer, Berlin / Heidelberg, 1997.

[36] V. Ganesh, T. Leek, and M. Rinard. Taint-based Directed Whitebox Fuzzing. In Pro-
ceedings of the 31st IEEE International Conference on Software Engineering (ICSE),
pages 474–484. IEEE Computer Society, May 2009.

[37] J. Gannon, P. McMullin, and R. Hamlet. Data Abstraction, Implementation, Spec-
ification, and Testing. ACM Transactions on Programming Languages and Systems
(TOPLAS), 3(3):211–223, July 1981.

[38] A. Gargantini and C. Heitmeyer. Using Model Checking to Generate Tests from
Requirements Specifications. In O. Nierstrasz and M. Lemoine, editors, Software
Engineering – ESEC/FSE ’99, volume 1687 of Lecture Notes in Computer Science,
pages 146–162. Springer, Berlin / Heidelberg, 1999.

[39] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 213–223. ACM, 2005.

[40] P. Godefroid, M. Y. Levin, and D. Molnar. Automated Whitebox Fuzz Testing.

[41] A. Gotlieb, B. Botella, and M. Ruehe. Automatic Test Data Generation using Con-
straint Solving Techniques. In Proceedings of the 1998 ACM SIGSOFT international
Symposium on Software Testing and Analysis (ISSTA), pages 53–62. ACM, 1998.

78 Bibliography

[42] M. Harder, J. Mellen, and M. D. Ernst. Improving Test Suites via Operational
Abstraction. In Proceedings of the 25th International Conference on Software Engi-
neering (ICSE), pages 60–71. IEEE Computer Society, 2003.

[43] M. P. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and J. Gao. Auto-generating
Test Sequences Using Model Checkers: A Case Study. In A. Petrenko and A. Ulrich,
editors, Formal Approaches to Software Testing, volume 2931 of Lecture Notes in
Computer Science, page 1100. Springer, Berlin / Heidelberg, 2004.

[44] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick, M. Ghe-
orghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen, A. J. H. Simons, S. Vilkomir,
M. R. Woodward, and H. Zedan. Using Formal Specifications to Support Testing.
ACM Computing Surveys, 41(2):9:1–9:76, February 2009.

[45] H. Hong, I. Lee, O. Sokolsky, and S. Cha. Automatic Test Generation from Statecharts
Using Model Checking. In Proceedings of the 1st Workshop on Formal Approaches to
Testing of Software, pages 15–30, 2001.

[46] H. Hong, I. Lee, O. Sokolsky, and H. Ural. A Temporal Logic Based Theory of
Test Coverage and Generation. In J.-P. Katoen and P. Stevens, editors, Tools and
Algorithms for the Construction and Analysis of Systems, volume 2280 of Lecture
Notes in Computer Science, pages 151–161. Springer, Berlin / Heidelberg, 2002.

[47] H.-M. Hörcher and J. Peleska. Using Formal Specifications to Support Software
Testing. Software Quality Journal, 4(4):309–327, 1995.

[48] P. Jalote. Specification and Testing of Abstract Data Types. Computer Languages,
17(1):75–82, 1992.

[49] M. Jimenez, T. Lindahl, and K. Sagonas. A Language for Specifying Type Con-
tracts in Erlang and its Interaction with Success Typings. In Proceedings of the 2007
SIGPLAN Workshop on Erlang, pages 11–17. ACM, 2007.

[50] T. Jéron and P. Morel. Test Generation Derived from Model-Checking. In N. Halb-
wachs and D. Peled, editors, Computer Aided Verification, volume 1633 of Lecture
Notes in Computer Science, pages 108–122. Springer, Berlin / Heidelberg, 1999.

[51] J.-M. Jézéquel, D. Deveaux, and Y. L. Traon. Reliable Objects: Lightweight Testing
for OO Languages. IEEE Software, 18(4):76–83, July 2001.

[52] R. Kaksonen. A Functional Method for Assessing Protocol Implementation Security.
VVT Publications, October 2001.

[53] C. Kaner and J. Bach. Black Box Software Testing: The Oracle Problem. http://
www.testingeducation.org/BBST/BBSTIntro1.html, 2005. Lecture Notes, Center
for Software Testing Education & Research, Florida Institute of Technology.

[54] R. A. Kemmerer. Testing Formal Specifications to Detect Design Errors. IEEE
Transactions on Software Engineering, 11(1):32–43, January 1985.

[55] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic Auto-
mated Software Testing. In R. Peña and T. Arts, editors, Implementation of Func-
tional Languages, volume 2670 of Lecture Notes in Computer Science, pages 991–991.
Springer, Berlin / Heidelberg, 2003.

http://www.testingeducation.org/BBST/BBSTIntro1.html
http://www.testingeducation.org/BBST/BBSTIntro1.html

Bibliography 79

[56] B. Korel. Automated Software Test Data Generation. IEEE Transactions on Software
Engineering, 16(8):870–879, 1990.

[57] B. Krause and T. Wahls. jmle: A Tool for Executing JML Specifications Via Con-
straint Programming. In L. Brim, B. Haverkort, M. Leucker, and J. van de Pol,
editors, Formal Methods: Applications and Technology, volume 4346 of Lecture Notes
in Computer Science, pages 293–296. Springer, Berlin / Heidelberg, 2007.

[58] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, C. Chen, Y.-S. Kim, and Y.-K. Song. De-
veloping an Object-Oriented Software Testing and Maintenance Environment. Com-
munications of the ACM, 38(10):75–87, October 1995.

[59] B. Legeard, F. Peureux, and M. Utting. Automated Boundary Testing from Z and B.
In L.-H. Eriksson and P. Lindsay, editors, FME 2002: Formal Methods–Getting IT
Right, volume 2391 of Lecture Notes in Computer Science, pages 221–236. Springer,
Berlin / Heidelberg, 2002.

[60] B. Legeard, F. Peureux, and M. Utting. Controlling Test Case Explosion in Test
Generation from B Formal Models. Software Testing, Verification and Reliability,
14(2):81–103, June 2004.

[61] T. Lindahl and K. Sagonas. Detecting Software Defects in Telecom Applications
Through Lightweight Static Analysis: A War Story. In W.-N. Chin, editor, Pro-
ceedings of the Second Asian Symposium on Programming Languages and Systems,
volume 3302 of Lecture Notes in Computer Science, pages 91–106, Berlin / Heidelberg,
2004. Springer.

[62] T. Lindahl and K. Sagonas. TypEr: a Type Annotator of Erlang Code. In Proceedings
of the 2005 ACM SIGPLAN Workshop on Erlang, pages 17–25. ACM, 2005.

[63] T. Lindahl and K. Sagonas. Practical Type Inference Based on Success Typings. In
Proceedings of the 8th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, pages 167–178. ACM, 2006.

[64] S. Liu and H. Wang. An Automated Approach to Specification Animation for Vali-
dation. The Journal of Systems and Software, 80(8):1271–1285, August 2007.

[65] P. D. L. Machado. Testing from Structured Algebraic Specifications: The Oracle
Problem. PhD thesis, University of Edinburgh, 2000.

[66] M.-V. Manoukian. Detection of Opaque Violations in Erlang Using Static Analy-
sis. Diploma thesis, Department of Electrical and Computer Engineering, National
Technical University of Athens, 2009.

[67] S. Marlow and P. Wadler. A practical subtyping system for Erlang. In Proceedings
of the 2nd ACM SIGPLAN International Conference on Functional Programming,
pages 136–149. ACM, 1997.

[68] J. McDonald, L. Murray, and P. Strooper. Translating Object-Z Specifications to
Object-Oriented Test Oracles. In Proceedings of the 4th Asia-Pacific Software Engi-
neering and International Computer Science Conference (APSEC), page 414. IEEE
Computer Society, 1997.

80 Bibliography

[69] J. McDonald and P. Strooper. Translating Object-Z Specifications to Passive Test
Oracles. In Proceedings of the 2nd IEEE International Conference on Formal Engi-
neering Methods (ICFEM), page 165. IEEE Computer Society, 1998.

[70] P. McMinn. Search-based Software Test Data Generation: A Survey. Software Test-
ing, Verification and Reliability, 14(2):105–156, 2004.

[71] C. Meudec. ATGen: Automatic Test Data Generation Using Constraint Logic Pro-
gramming and Symbolic Execution. Software Testing, Verification and Reliability,
11(2):81–96, June 2001.

[72] B. P. Miller, L. Fredriksen, and B. So. An Empirical Study of the Reliability of UNIX
Utilities. Communications of the ACM, 33(12):32–44, 1990.

[73] T. Miller and P. Strooper. Model-Based Specification Animation Using Testgraphs.
In C. George and H. Miao, editors, Formal Methods and Software Engineering, vol-
ume 2495 of Lecture Notes in Computer Science, pages 192–203. Springer, Berlin /
Heidelberg, 2002.

[74] T. Miller and P. Strooper. Supporting the Software Testing Process through Speci-
fication Animation. In Proceedings of the 1st International Conference on Software
Engineering and Formal Methods (SEFM), page 14. IEEE Computer Society, 2003.

[75] S.-O. Nyström. A soft-typing system for Erlang. In Proceedings of the 2003 ACM
SIGPLAN Workshop on Erlang, pages 56–71. ACM, 2003.

[76] J. Offutt and A. Abdurazik. Generating Tests from UML Specifications. In R. France
and B. Rumpe, editors, UML ’99 – The Unified Modeling Language, volume 1723 of
Lecture Notes in Computer Science, page 76. Springer, Berlin / Heidelberg, 1999.

[77] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann. Generating Test Data from State-
Based Specifications. Software Testing, Verification and Reliability, 13(1):25–53,
March 2003.

[78] J. Offutt, Y. Xiong, and S. Liu. Criteria for Generating Specification-based Tests. In
Proceedings of the 5th International Conference on Engineering of Complex Computer
Systems (ICECCS), pages 119–129. IEEE Computer Society, October 1999.

[79] C. Oriat. Jartege: a Tool for Random Generation of Unit Tests for Java Classes. In
R. Reussner, J. Mayer, J. A. Stafford, S. Overhage, S. Becker, and P. J. Schroeder, ed-
itors, Quality of Software Architectures and Software Quality, volume 3712 of Lecture
Notes in Computer Science, pages 242–256. Springer, Berlin / Heidelberg, 2005.

[80] C. Pacheco and M. D. Ernst. Eclat: Automatic Generation and Classification of
Test Inputs. In A. P. Black, editor, ECOOP 2005 – Object-Oriented Programming,
volume 3586 of Lecture Notes in Computer Science, pages 504–527. Springer, Berlin
/ Heidelberg, 2005.

[81] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed Random Test
Generation. In 29th International Conference on Software Engineering (ICSE), pages
75–84. IEEE Computer Society, 2007.

Bibliography 81

[82] A. Pasquini and B. Aichernig. Automated Black-Box Testing with Abstract VDM
Oracles. In K. Kanoun, editor, Computer Safety, Reliability and Security, volume
1698 of Lecture Notes in Computer Science, page 688. Springer, Berlin / Heidelberg,
1999.

[83] D. K. Peters and D. L. Parnas. Using Test Oracles Generated from Program Docu-
mentation. IEEE Transactions on Software Engineering, 24(3):161–173, March 1998.

[84] C. V. Ramamoorthy, S.-B. F. Ho, and W. Chen. On the Automated Generation
of Program Test Data. IEEE Transactions on Software Engineering, 2(4):293–300,
December 1976.

[85] D. J. Richardson, O. O’Malley, and C. Tittle. Approaches to Specification-Based
Testing. In Proceedings of the 3rd ACM SIGSOFT Symposium on Software Testing,
Analysis, and Verification, pages 86–96. ACM, 1989.

[86] J. Rushby. Automated Test Generation and Verified Software. In B. Meyer and
J. Woodcock, editors, Verified Software: Theories, Tools, Experiments, volume 4171
of Lecture Notes in Computer Science, pages 161–172. Springer, Berlin / Heidelberg,
2008.

[87] K. Sabnani and A. Dahbura. A Protocol Test Generation Procedure. Computer
Networks and ISDN Systems, 15(4):285–297, 1988.

[88] M. Satpathy, M. Leuschel, and M. Butler. ProTest: An Automatic Test Environment
for B Specifications. In Proceedings of the 2004 Workshop on Model Based Test-
ing (MBT), volume 111 of Electronic Notes in Theoretical Computer Science, pages
113–136. Elsevier, January 2005.

[89] K. K. Thorup. Triq: Trifork QuickCheck. http://krestenkrab.github.com/triq/.

[90] N. Tracey, J. Clark, and K. Mander. Automated Program Flaw Finding using Sim-
ulated Annealing. ACM SIGSOFT Software Engineering Notes, 23(2):73–81, 1998.

[91] H. Ural. Formal Methods for Test Sequence Generation. Computer Communications,
15(5):311–325, 1992.

[92] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-Based Testing.
Working paper, April 2006.

[93] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test Input Generation with Java
PathFinder. In Proceedings of the 2004 ACM SIGSOFT international Symposium on
Software Testing and Analysis, pages 97–107. ACM, 2004.

[94] E. J. Weyuker. On Testing Non-Testable Programs. The Computer Journal,
25(4):465–470, 1982.

[95] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A Framework for Gener-
ating Object-Oriented Unit Tests Using Symbolic Execution. In N. Halbwachs and
L. D. Zuck, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 3440 of Lecture Notes in Computer Science, pages 365–381. Springer,
Berlin / Heidelberg, 2005.

http://krestenkrab.github.com/triq/

82 Bibliography

[96] G. Xu and Z. Yang. JMLAutoTest: A Novel Automated Testing Framework Based
on JML and JUnit. In A. Petrenko and A. Ulrich, editors, Formal Approaches to Soft-
ware Testing, volume 2931 of Lecture Notes in Computer Science, pages 1103–1104.
Springer, Berlin / Heidelberg, 2004.

[97] H. Zhu, P. A. V. Hall, and J. H. R. May. Software Unit Test Coverage and Adequacy.
ACM Computing Surveys, 29(4):366–427, December 1997.

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Tables
	List of Listings
	Introduction
	The Erlang Language and Type System
	The Erlang Language
	Adding a Type System
	Past Efforts
	The Dialyzer Tool
	Creating a Type System

	The Erlang Type System
	Built-in Types
	User-Defined Types
	Function Specifications
	Opaque Types

	Property-Based Testing and PropEr
	Software Testing
	Unit Testing
	Property-Based Testing
	The Need for Shrinking
	Implementations

	Our Implementation: PropEr
	PropEr Workflow
	Writing Properties
	The PropEr Type System
	Recursive Generators
	Symbolic Instances

	Utilizing Types in Testing
	Motivation
	Converting Types to Generators
	Simple Types
	Recursive Types

	Integration with PropEr Notation
	Handling Opaque Datatypes
	Identifying Useful API Functions
	Constructing a Symbolic Generator

	Automatic Spec Testing
	Generating Valid Inputs
	Checking the Return Value

	Practical Evaluation
	Context
	Self-Testing
	Results Summary
	Conclusions

	Standard Library Testing
	Results Summary
	Conclusions

	Related Work
	Oracle Generation
	Test Data Generation
	Test Set Adequacy Evaluation

	Conclusion
	Concluding Remarks
	Future Work

	Bibliography

