TARGETED PROPERTY-BASED
TESTING

Andreas Loscher, Konstantinos Sagonas
andreas.loscher@it.uu.se, kostis@it.uu.se
Department of Information Technology

Uppsala University

Sweden

mailto:andreas.loscher@it.uu.se
mailto:kostis@it.uu.se

Random Property-Based Testing
Motivation
Targeted Property-Based Testing

Case Studies
Concluding Remarks

Outline

Property-Based Testing

e High-level, semi-automatic, black-box testing
technique.

e Testing user-specified properties of the SUT.
e Examples:
— QuickCheck (Haskell)

— ScalaCheck (Scala)
— PropEr (Erlang)

-

i PropEr

e
et} A QuickCheck-Inspired Property-Based Testing Tool for Erlang

Random Property-Based Testing

e PBT tool provides:
— Random generators for basic types
— Language to write more complex generators

e PBT tool automatically tests these properties
— Generate wide range of random inputs
— Run the SUT with these inputs
— Check if the properties hold

Random Property-Based Testing

Generator

prop list reverse() ->
?FORALL(L, proper_types:Iist(integer()j,
lists:reverse(lists:reverse(L)) == L).

Property should hold for all L General Property

Random Property-Based Testing

[]

[2]

[-5.-1,-8,1]

[16.3,-23]
[38,29,-28,12,-11,-3,-28,-6,9,-16,4,4]

i i e
(I | I A B

1> proper:quickcheck(example:prop_list _reverse(), 1000).
................... 1000 dots ... iii it a e
OK: Passed 1000 test(s).

Graph Generator

graph(N) ->
Vs = lists:seq(l, N),
?LET(Es, proper_types:list(edge(Vs)),
{Vs, lists:usort(Es)}).

edge(Vs) ->
?SUCHTHAT({V1, V2}, {oneof(Vs), oneof(Vs)},
V1 < V2).

UPPSALA

Distance From Sink

1

On this graph, the maximum distance to sink is 4.

Is there a network with 42 nodes where
the maximum distance to the sink > 217

Distance From Sink

prop_length() ->
?FORALL(G, graph(42),
begin
L = lists:max(distance from sink(G)),
L < 21
end).

UPPSALA

Distance From Sink

1> proper:quickcheck(example:prop_ length(), 100000).
................... 100000 dOtS . ciiiiiiiii i e i e aaaaa
OK: Passed 100000 test(s).

Same result for 1000 repetitions.

But we know that the property does not hold for
some graphs.

Possible Solutions

e Write more involved generators?

e Guide input generation?

Possible Solutions

" P olved 5

e Guide input generation!
— Using a search strategy.

Targeted Property-Based Testing

prop_ length() ->
?FORALL(G, graph(42),
begin
L = lists:max(distance from sink(G))
L < 21
end).

e Use a search strategy to find a G that falsifies the
property.

e Observe the relationship between G and L.

UPPSALA

gaall Targeted Property-Based Testing

e Combine Search Techniques with Property-Based Testing.

e Guide input generation towards input with high probability
of failing.

e Gather information during test execution in form of utility
values (UVs).

e UVs capture how close input came to falsifying a property.

Targeted Property-Based Testing

prop_ length hc() ->
?FORALL(G, graph(42),
begin
L = lists:max(distance from sink(G)),
L < 21
end).

Targeted Property-Based Testing

prop_ length hc() ->
?FORALL(G, graph(42),
begin
Utility //UV = lists:max(distance_from sink(G)),
Values UV < 21
end).

Targeted Property-Based Testing

prop_length hc() ->
?FORALL(G, graph(42),
begin
Utility YV | = lists:max(distance_from _sink(G)),

Values ~ |ZNAXIMIZE(UV),
uv < 21 \Search

end) . Target

Targeted Property-Based Testing

prop_length hc() ->

?FORALL(G, [?TARGET(graph(42))— Generator the
begin strategy controls

Utility YV | = lists:max(distance_from _sink(G)),

values ~ |ZNAXIMIZE(UV),
uv < 21 \Search

end) . Target

Targeted Property-Based Testing

Search

prop_length hc() -> Strategy
?TARGET STRATEGY(Chill climbing,

?FORALL(G, [?TARGET(graph (42}),» Generator the
begin strategy controls

Utility UV = lists:max(distance from_sink(G)),

PMAXIMIZE(UV) ,
Values v < 21 \Search

end)). Target

prop_ length

Targeted Property-Based Testing

Search
hc) -> Strategy

?TARGET _STRATEGY(hill climbing,

?FORALL (G,

begin
uv

2TARGET (graph_hc(42)[f?enerator the
strategy controls

= lists:max(distance from sink(G)),

Utility

Values UV

PMAXIMIZE CUV)
<21 \ Search

end)).

Target

Now prop_ length hc fails after 17,666 tests (on average).

UPPSALA

gaall Targeted Property-Based Testing

e Hill Climbing requires a neighborhood function
— which, currently, needs to be supplied by the programmer

— remove and add some random edges from/to the graph

Depends on the search strategy

e Hill Climbing can get stuck in local optima
— Simulated Annealing is a better strategy

UPPSALA

gaall Targeted Property-Based Testing

orop Target() > Search Strategy

?TARGET STRATEGY (SearchStrategy,

?FORALL(Input,| ?TARGET (Params),
begin Generator the
Utility /UV = SUT:run(Input), strategy controlls
Values ?MAXIMIZE(CUV),

UV < Threshold\ Search

end)) . Target

U A

Case Study 1

Setup:

e Sensor network

e Random distribution of UDB server and client nodes

e Client node periodically sends messages to server node

Test:
e Has X-MAC for any network a
duty-cycle > 25%?

(duty-cycle ::= % time the radio is on)

UPPSALA
UNIVERSITET

Random PBT

e Average amount of tests: 1188
e Average time per tests: 23.5s
e Mean Time to Failure: 7h46m

Targeted PBT

e Average amount of tests: 200
e Average time per tests: 40.6s
e Mean Time to Failure : 2h12m

Case Study 1

Case Study 3

1(pc) = Noo

(pc) p (NooP)
pcls m| = |pc+l sim

1(pc) = Push v

(pe) (PUSH)
pcls m = |pc+liv:is m

i(pc) = Po

(pc) = Pop (POP)

pclv:s\m|=|pc+l|s m

e Definitions for an abstract machine.
e Test: Do these definitions fulfill a certain security criteria?
(Noninterference)

Catalin Hritcu et al. "Testing noninterference, quickly." Journal of Functional
Programming, 26 (2016).

e Case Study 3

Random PBT

e Naive: generate random programs

e ByExec: generate program step-by-step one instruction a
time; new instruction should not crash program

Random PBT

Naive ByExec
ADD 2234,08ms 312,97ms
LOAD 324028,34ms 987,91ms

STORE A timeout 4668,04ms

e Case Study 3

Targeted PBT

e List: programs are a list of instructions; using the built-in list
generator for Simulated Annealing

e ByExec: neighbor of a program is a program with one more
Instruction

Random PBT Targeted PBT

Naive ByExec List ByExec
ADD 2234,08 312,97 319,86 68,49
LOAD 324028,34 987,91 287,23 135,52

STORE A — 4668,04 1388,09 263,94

Case Study 3

hand written; ca. 30 lines of additional code

PBT / Target
Naive ByExec List ByExec
ADD 2234,08 312,97 319,86 68,49
LOAD 324028,34 987,91 287,23 135,52
STORE A - 4668,04 1388,09 263,94
/

1 line of code!

UPPS,

Concluding Remarks

e Framework for Targeted Property-Based Testing.
e High-level expressive language for specifying properties.

e Compatible with random PBT.

e Two built-in strategies: hill climbing + simulated annealing.
e |nfrastucture for additional search strategies.

e Fully integrated into PropéEr.

i

‘ PropEr

A QuickCheck-Inspired Property-Based Testing Tool for Erlang

	TARGETED PROPERTY-BASED TESTING
	Outline
	Property-Based Testing
	Random Property-Based Testing
	Random Property-Based Testing
	Random Property-Based Testing
	Graph Generator
	Distance From Sink
	Distance From Sink
	Distance From Sink
	Possible Solutions
	Possible Solutions
	Targeted Property-Based Testing
	Targeted Property-Based Testing
	Targeted Property-Based Testing
	Targeted Property-Based Testing
	Targeted Property-Based Testing
	Targeted Property-Based Testing
	Targeted Property-Based Testing
	Targeted Property-Based Testing
	Targeted Property-Based Testing
	Targeted Property-Based Testing
	Case Study 1
	Case Study 1
	Case Study 3
	Case Study 3
	Case Study 3
	Case Study 3
	Concluding Remarks

