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ABSTRACT

We introduce targeted property-based testing, an enhanced form of
property-based testing that aims to make the input generation com-
ponent of a property-based testing tool guided by a search strategy
rather than being completely random. Thus, this testing technique
combines the advantages of both search-based and property-based
testing. We demonstrate the technique with the framework we
have built, called Target, and show its effectiveness on three case
studies. The first of them demonstrates how Target can employ
simulated annealing to generate sensor network topologies that
form configurations with high energy consumption. The second
case study shows how the generation of routing trees for a wireless
network equipped with directional antennas can be guided to fulfill
different energy metrics. The third case study employs Target
to test the noninterference property of information-flow control
abstract machine designs, and compares it with a sophisticated
hand-written generator for programs of these abstract machines.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Search-based software engineering; • Theory of compu-

tation → Simulated annealing;
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1 INTRODUCTION

Testing is an integral part of modern software development as
it finds errors in software systems and gives confidence in their
correctness. Random property-based testing (PBT) is a high-level,
semi-automatic, black-box testing technique in which, rather than
writing a plethora of test cases by hand, one simply specifies general
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properties that the system under test (SUT) is expected to satisfy,
and generators that produce well-distributed random inputs to the
parts of the system that are tested [11, 27].

Testing should unveil faults as effectively as possible within
the available resources. As with all random testing techniques,
the chance of finding a bug and the confidence in the correctness
of the SUT increases with the number of generated tests. With
each additional test, the input space gets covered a bit more. This
works especially well in situations where a bug is triggered by a
high percentage of the input space. However, if the input space
is large then even a big number of tests per property will not
yield satisfactory confidence. Moreover, if the percentage of failing
input is relatively small, it can be hard to find counterexamples to
properties that the SUT does not fulfill.

Search-based software testing techniques (cf. the survey article
by Harman et al. [14]) try to resolve such issues by applying search
techniques to the input generation. The input generation is then
typically guided towards an optimization goal, e.g., towards inputs
that maximize or minimize some quantity of the system.

This paper introduces targeted property-based testing, an en-
hanced form of PBT that makes its input generator component
of a PBT tool guided by a search strategy instead of being random.
We describe the conditions under which targeted property-based
testing is applicable and the ingredients it requires. Moreover, we
present Target, a system that provides a concrete implementation
of targeted property-based testing. Target, which nowadays is
fully integrated in the property-based testing tool PropEr [26], ex-
tends the high-level language of PropEr for specifying properties
with supporting infrastructure that allows the user to employ some
built-in or specify a new custom search strategy for input genera-
tion in a succinct and flexible way. In doing so, Target increases
the probability that input that falsifies a property is generated, and
ultimately the tester’s confidence in the SUT. In all examples we
have tried so far, targeted PBT outperforms random PBT.

The rest of the paper is structured as follows. The next section
overviews random PBT and presents examples that show its short-
comings when dealing with large and complicated input domains.
Section 3 introduces the idea of targeted PBT and the Target frame-
work in an informal way. Since Target is parametrized by a search
strategy, we describe the implementations of two built-in such
strategies in Section 4. We then present a more formal description
of targeted PBT in Section 5 and demonstrate its effectiveness on
three case studies in Section 6. The paper ends with two sections
containing related work and concluding remarks.

2 PROPERTY-BASED TESTING

Property-based testing (PBT) is a random testing technique inwhich
the intended system behavior is expressed by a description of valid
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inputs to the SUT and properties that are expected to hold when
the system is subjected to instances of valid inputs. A property-
based testing tool takes these definitions and successively generates
inputs with increasing complexity. The tool then subjects the SUT
to these inputs and checks if the outputs falsify the properties or not.
Following this methodology, a tester’s manual tasks are reduced to
correctly specifying the parameters of the SUT and formulating a
set of properties that accurately describe its intended behaviour.

PBT tools operate on properties, which are essentially partial
specifications of the SUT, meaning that they are more compact and
easier to write and understand than full system specifications. Users
can make full use of the host language when writing properties,
and thus can accurately describe a wide variety of input-output
relations. They may also write their own test data generators, should
they require greater control over the input generation process.
Compared to testing systems with manually-written test cases,
testing with properties is a faster and less mundane process. The
resulting properties are also much more concise than a long series
of unit tests, but, if used properly, can accomplish more thorough
testing of the SUT by subjecting it to a much greater variety of
inputs than any human tester would be willing or able to write.
Moreover, properties can serve as a checkable partial specification
of a system, one that is considerably more general than any set of
unit tests, and thus one that is much better at exploring a larger
percentage of behaviours of a system and unveiling its errors.

In PBT tools the testing process can typically be configured in
various ways through options. For example, users can control the
number of tests to run, the size of generated inputs, etc.

Let us illustrate PBT and explain the language of PropEr [26],
the tool we use, with a simple example.

prop_list_reverse() ->

?FORALL(L, proper_types:list(), lists:reverse(lists:reverse(L)) == L).

This property states that, for any list L, if we reverse L twice we
get back the original list. In PropEr, properties begin with prop_,
anything that begins with a ? is a macro corresponding to some
operation that the PropEr tool provides, and anything that begins
with a capital letter (like L here) is a variable. Besides macros, like
the ?FORALL macro, PBT tools come with built-in generators for the
base types of the host language (like the list() generator, which
is available from the proper_types module). Using the built-in gen-
erators and appropriate macros, like the ?LET and ?SUCHTHAT macros
that we will use below, users can define custom generators which
are tailored to the inputs of properties they want to test. However,
writing such custom generators is often quite challenging. Occa-
sionally, it can be extremely difficult to come up with generators
that are effective.

A Motivating Example

Let us present a more involved example. Suppose we want to test
whether a system of network nodes performs as expected regardless
of its topology. The input to such a property would be graphs of a
fixed number of vertices (network nodes).

Many performance criteria of networks, like energy consumption
or message latency, are influenced by the amount of hops messages
need to take to reach their destination. In our example let us suppose
that the majority of the messages are going to one dedicated node,

the sink. (This type of situation often occurs in sensor networks
where leaf nodes collect data and send them to a sink for further
processing [2].)

For simplicity, let us also assume that the SUT returns the lengths
of all shortest paths between the sink and the other nodes. We can
formulate a property that states that the longest of those paths
should not exceed 21 hops (for a network with 42 nodes). Obviously
we can easily construct a counterexample for this property by hand.
But our aim, of course, is to find a counterexample automatically.
We can specify such a property in PropEr as follows:
prop_length() ->

?FORALL(G, graph(42), lists:max(distance_from_sink(G)) < 21).

graph(N) ->

Vs = lists:seq(1, N),

?LET(Es, proper_types:list(edge(Vs)), {Vs, lists:usort(Es)}).

edge(Vs) ->

?SUCHTHAT({N1, N2}, {oneof(Vs), oneof(Vs)}, N1 < N2).

Assume that the function call distance_from_sink(G) returns a list with
the lengths of the shortest path from each node of G to the sink. The
maximum of these lengths is calculated by lists:max(). The property
prop_length uses the graph(N) generator which produces a list of ver-
tices Vs and picks a list of edges as defined by the edge(Vs) generator.
This generator picks two vertices from Vs such that the number of
the first vertex is strictly smaller than the second one. This makes
it possible to filter out duplicate edges in the graph(N) generator.
Property-based testing makes it easy to describe structured data
like the graphs as input to the system. This property can easily be
tested using PropEr:

1> proper:quickcheck(example:prop_length(), 4711).

................... 4711 dots .......................

OK: Passed 4711 test(s).

We see that the property is not falsified after running the specified
number of tests. PropEr randomly generated 4,711 graphs, each
with 42 vertices, and none of these graphs had a shortest path from
the sink to another node that was longer than 21 hops.

This property is hard to falsify without writing a significantly
more involved custom generator for graphs of some number of
vertices. The topology has to have a particular shape that is only
found in a relatively small percentage of the inputs. For example,
more complex input (more edges in the topology) will not automat-
ically lead to a higher probability in finding a counterexample since
adding edges can introduce additional shorter paths between the
sink and another vertex.

In principle, it is possible to find a counterexample with PropEr.
However, the odds of doing so are low and the number of runs
that is needed is very high. For this property, we were not able to
find a counterexample using PropEr after 100,000 tests, even after
repeating the same experiment a thousand times.

With better knowledge of the input domain, the odds of finding
the right input can be increased. For example, limiting the generator
to graphs with longer paths between two nodes certainly increases
the probability of finding a failing input. Such a generator however
is complicated to write. In other properties, the relation between the
network topology and the observed performance metric might not
be as clear as in this example and it may be unclear what structure
the generated graphs should have. Last but not least, having to
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write a tailored custom generator for each different property makes
property-based testing less attractive; we are much better off if
we can use the same graph generator to test all properties of the
network.

The property prop_length demonstrates that it can take many
runs to find a counterexample if the amount of possible inputs that
falsify a property is small compared to the size of the input domain.
It is however possible to use search strategies to generate inputs
that have a higher probability to falsify a particular property by
observing the relation between the input value G and the output
from lists:max(distance_from_sink(G)).

In our example, the output of lists:max(distance_from_sink(G)) is
growing monotonically towards its maximum value. This means
that it is always possible to increase the output value by either
adding edges to introduce a new longest path, or by removing edges
to prevent “short-cuts.” This fact can be exploited in the generators
by using the previously generated input and the associated output
of lists:max(distance_from_sink(G)) to generate the next input. One
possibility to do so is to employ a search strategy such as Hill
Climbing in the input generation process.

3 TARGET: INFORMAL PRESENTATION

Targeted property-based testing is a variation of property-based
testing that aims to make test outcomes more consistent and reduce
the amount of required test runs to find bugs or achieve the same
confidence in the SUT compared to random PBT. It achieves this
by guiding the input generation with search techniques towards
values that have a higher probability of falsifying a property. Doing
so results in a more efficient exploration of the input space. The
testing framework we developed that implements targeted PBT,
called Target, uses information gathered during test execution in
the form of utility values (UVs) that specify how close input came
to falsifying a property.

The need for these UVs to exist naturally limits the type of
properties that Target can be applied to. Still, Target’s applica-
tion domain is quite large. As we will also see in Section 6, tests
where timing, resource consumption, or performance properties of
a SUT are checked against a threshold are ideal candidates for tar-
geted PBT. Target provides aid for writing such properties, built-in
search strategies to guide the input generation, and support for
extending the framework with new user-specified search strategies.

Target consists of three main components: (1) the strategy that
is used to explore the input space, (2) the component that supports
writing targeted generators, and (3) UVs that we want to maximize
or minimize. The UVs are paired with the input to the property.
If an input has a UV beyond the property-specific threshold then
the property will fail. The difference between this threshold and
the UV is effectively the distance between the input value(s) and a
potential counterexample for the property.

The Target framework currently comes with an implementa-
tion of Hill Climbing and Simulated Annealing as built-in search
strategies. However, the infrastructure that Target provides is gen-
eral enough to be applicable to other search strategies, e.g., based
on genetic algorithms or linear regression.

The general structure of a property that can be tested with
Target looks as follows:

prop_Target() -> % Try to check a property

?TARGET_STRATEGY(SearchStrategy, % for some Search Strategy

?FORALL(Input, ?TARGET(Params), % and for some Parameters

begin % for the input generation.

UV = SUT:run(Input), % Do so by running SUT with Input

?MAXIMIZE(UV), % and maximize its Utility Value

UV < Threshold % up to some Threshold.

end)).

The search strategy generates input for each run and tests the
property with it. Besides running the test with the current input,
the SUT:run() function needs to return the utility value (UV). This
UV is then reported to the search strategy component of Target
which uses this information to produce the next input value. The
search strategy then tries to explore the input space effectively and
produce a new input that maximizes the UV, thus increasing the
chance of falsifying the property.

The implementation of the search strategy is mostly independent
from the property that is tested. The user of Target does not neces-
sarily need to know how a certain search strategy is implemented
in order to use it.

Most strategies require additional information about how the in-
puts are generated. (This information is the argument of the ?TARGET

macro passed in the form of an association map.) Simulated An-
nealing for example, as provided by Target, requires the user to
specify a generator for the first element and a neighborhood func-
tion; see Section 4.2. However the user does not need to implement
how utility values and inputs are handled by the search strategy.
Moreover, the property itself stays mostly unchanged and can be
expressed in typical PBT manner.

4 SEARCH STRATEGIES

Wenow describe two search strategies (Hill Climbing and Simulated
Annealing) that are built-in in the Target system.

4.1 Hill Climbing

Let us begin by describing the Hill Climbing (HC) strategy for graph
inputs as used in our prop_length example. The strategy starts with
an initial and a random neighboring input value and picks the best
of the two as new best input. This best input is then compared to
a random neighboring input until no better input can be found. A
neighboring input is an input that is similar to the current one.

If we apply the HC strategy to prop_length we want to achieve a
higher probability of finding an input that falsifies the property. To
apply the strategy, we need to connect the utility values produced by
lists:max(distance_from_sink(G)) with the property and the generator
for the input.

A rewritten prop_length that makes use of the macros provided
by Target and the HC strategy looks like follows:
prop_length_hc() ->

?TARGET_STRATEGY(hill_climbing,

?FORALL(X, ?TARGET(graph_hc(42)),

begin

UV = lists:max(distance_from_sink(G)),

?MAXIMIZE(UV),

UV < 21

end)).

graph_hc(N) ->

#{first => graph(N), next => fun graph_next/1}.
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The ?TARGET_STRATEGY macro informs Target about the search strat-
egy we want to use (Hill Climbing in this case). The ?TARGET macro
defines generators that are under the control of Target. HC needs
an initial input and the ability to produce a random neighboring
input. We use the graph(N) generator to obtain a random initial so-
lution and forward it together with the neighborhood function
graph_next(G) to Target. Finally ?MAXIMIZE tells Target which vari-
able should be maximized.

Usually PropEr controls how the input is produced from the
generators. With Target we want to hand control over the in-
put generation process from PropEr to a search strategy. This is
achieved by tagging the generators with the ?TARGET() macro. This
macro is defined as follows:
-define(TARGET(Params), targeted(make_ref(), Params)).

targeted(Key, Params) ->

?LAZY(targeted_gen(Key, Params)).

targeted_gen(Key, Params) ->

{State, NextFunc, _UpdateFunc} = get_target(Key, Params),

{NewState, NextValue} = NextFunc(State),

update_target(Key, NewState),

NextValue.

The ?TARGETmacro has one argument that allows to pass information
about the type or the size of the input or similar to the search
strategy. We use the ?LAZY() construct of PropEr. ?LAZY creates a
generator that evaluates the enclosed expression each time a new
value needs to be generated. This means that for each generation
step PropEr calls targeted_gen() with the same arguments. The first
argument to targeted_gen() is a unique reference1 that is used as key
to the generator.

The targeted_gen() function calls get_target() to get the target-
triple consisting of a target state, a next function and a state-update
function. The next function is called with the current state to pro-
duce a new instance of the input. This input generation can change
the target state, thus update_target() is called to store this new state.
When get_target() is called for the first time it creates a new target
according to the used search strategies and the passed options.

We also want to associate each input value with a utility value.
Each time a utility value UV has been extracted from the SUT the
?MAXIMIZE(UV) macro can be used to tell Target which value should
be increased in the next input. Its implementation is similar to the
?TARGET() macro:
-define(MAXIMIZE(UV), update_target_uvs(UV)).

update_target_uvs(UV) ->

[update_target_uv(Key, UV) || Key <- get_target_keys()].

update_target_uv(Key, UV) ->

{State, _NextFunc, UpdateFunc} = get_target(Key, []),

NewState = UpdateFunc(State, UV),

update_target(Key, NewState).

The functions update_target() and get_target() are stateful and pre-
serve the target state in-between test runs. This enables Target to
reason over previously generated inputs and their associated utility
values when generating the next input(s).

A search strategy is mainly defined by how the next function
and the state-update function are implemented as well as the initial
1More information at http://erlang.org/doc/man/erlang.html#make_ref-0.

init_target(#{first := First, next := Next}) ->

{%% 1st element: initial state

{generate_sample(First), unknown, none},

%% 2nd element: next function

fun ({LastAcc, AccUtility, _LastGen}) ->

NewValue = generate_sample(Next(LastAcc)),

{{LastAcc, AccUtility, NewValue}, NewValue}

end,

%% 3rd element: state-update function

fun ({LastAcc, AccUtility, LastGen}, GenUtility) ->

case AccUtility =:= unknown orelse GenUtility > AccUtility of

true -> % accept new solution

{LastGen, GenUtility, LastGen};

false -> % continue with old solution

{LastAcc, AccUtility, LastGen}

end

end

}.

Figure 1: A function initializing Target for hill climbing.

state of Target. For the strategy hill_climbing these definitions
are shown in Fig. 1. The function init_target() is called with the
options passed when a target is initially created. These options
consist of a generator First of the first input and a generator Next

that produces neighboring input. In our example, we initialized
Target with graph_hc, so we will use the Hill Climbing strategy to
generate graphs.

The state consists of the currently best input, the associated
utility value, and the last generated input. The initial best input is
a random sample from the graph generator we used in the property
prop_length in Section 2. Since we do not know the utility value of
the initial input without testing it, we set it to unknown in the initial
state. Similarly, we initially set the last generated value to none.

The next function generates a random value in the neighborhood
of the last accepted input. This value is stored in the new state and
returned as the next input for the property. We sample the neigh-
boring solution from the generator Next which is parameterized by
the last accepted solution. This way we can use PropEr’s language
for defining generators to describe the neighborhood function for
the graph.

The state-update function compares the utility values of the last
generated and last accepted solution and stores the best value and
utility value as the new best solution.

The generator Next as used in prop_length_hc is implemented with
graph_next(G) as seen in Fig. 2. To produce neighboring graphs, the
code first decides on a new graph size and then removes and adds
a random amount of edges such that the new size of the graph is as
decided.

If we test the property prop_length_hc now it fails after an average
of 17,666 tests (measured over 1,000 runs with each time running
a maximum of 100,000 tests). More importantly, a counterexample
is found in all runs.

Hill Climbing as presented here has a series of shortcomings.
Finding a graph with maximum degree is a convex problem (local
optima are also global optima). Hill Climbing is a local optimiza-
tion strategy that performs very well on this class of problems. In
practice however, we need strategies that allow us to escape local
optima. We therefore propose the use of more powerful strategies
such as the one we present next.

http://erlang.org/doc/man/erlang.html#make_ref-0
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1 graph_next(G) ->
2 Size = graph_size(G),
3 ?LET(NewSize, neighboring_integer(Size),
4 ?LET(Additional, neighboring_integer(Size div 10),
5 begin
6 {Removals, Additions} =
7 case NewSize < Size of
8 true -> {Additional + (Size - NewSize), Additional};
9 false -> {Additional, Additional + (NewSize - Size)}
10 end,
11 ?LET(G_Del, remove_n_edges(G, Removals),
12 add_n_edges(G_Del, Additions))
13 end)).
14
15 graph_size({_, E}) ->
16 length(E).
17
18 %% generator for neighboring integer
19 neighboring_integer(Base) ->
20 Offset = trunc(0.05 * Base) + 1,
21 ?LET(X, proper_types:integer(Base - Offset, Base + Offset), max(0,X)).
22
23 add_n_edges({V, E}, N) ->
24 ?LET(NewEdges, proper_types:vector(N, edge(V)),
25 {V, lists:usort(E ++ NewEdges)}).
26
27 remove_n_edges({V, E}, 0) -> {V, E};
28 remove_n_edges({V, []}, _) -> {V, []};
29 remove_n_edges({V, E}, N) ->
30 ?LET(Edge, proper_types:oneof(E),
31 ?LAZY(remove_n_edges({V, lists:delete(Edge, E)}, N - 1))).

Figure 2: Implementation of the neighborhood function for

the HC strategy.

4.2 Simulated Annealing

Simulated Annealing (SA) is a well-studied local search meta-
heuristic [22] that can be used to address discrete and continu-
ous optimization problems. The key feature of SA is a mechanism
that enables escaping local optima by accepting search steps to
worse solutions in the hope to find a global optimum. SA has also
another favorable property in that it does not depend on the type
of data it is operating on. This allows us to apply SA as a strategy
to most types of input.

SA operates on a solution space Ω (the set of all possible solu-
tions) and an objective function f : Ω → �. In our framework
Ω is equivalent with the input space I . The objective function f
is equivalent to the property function p if we ignore whether the
property holds or fails. Furthermore, SA defines a neighborhood
function N : Ω → Ω that produces random neighboring solutions
(solutions that are close in the solution space) to a given solution.

SA starts with a random initial solution from the solution space. It
then produces a neighboring solution and accepts it as new solution
if the associated UV is higher than the one of the current solution. It
also accepts worse solutions with a probability that is dependent on
the current temperature t . The higher the temperature, the higher
the probability that a worse solution is accepted. The temperature
usually decreases over time following a temperature function (TF).
The acceptance probability is defined as follows:

Pr
accept

(in+1,tn+1) =



e
−

(un−un+1 )
tn+1 if un > un+1

1 otherwise

When implementing SA as search strategy we need to provide
a generator for I and the neighborhood function N for the input

space we want to use. Similar to the HC strategy, it is possible to
define this generator and neighborhood function using PropEr’s
generator language and to pass them as parameters to the ?TARGET

macro. The default integer generator for SA is the one below:

integer(Low, High) ->

#{first => proper_types:integer(Low, High),

next => integer_next(Low, High)}.

The first element is implemented by using PropEr’s default inte-
ger generator. The next element returns a generator that given an
instance from the input space and a temperature value between
0.0 and 1.0 will produce a neighboring element to the given in-
stance. The distance between the neighboring instance and the
original instance is determined by the given temperature. InTarget,
integer_next() is implemented as follows:

integer_next(Low, High) ->

fun (OldInstance, Temperature) ->

Offset = trunc(abs(Low - High) * Temperature * 0.1) + 1,

?LET(X, proper_types:integer(-Offset, Offset),

ensure_range(X + OldInstance, Low, High))

end.

The ensure_range() function bounds the newly generated value
to the allowed interval [Low,High]. This neighborhood function pro-
duces new integers that are at most 10% of the total interval range
apart from the given integer. This distance is also scaled by the
temperature. This scaling makes it possible to find the local optima
point faster in low temperature conditions.

In a similar manner, we can use the graph(N) and graph_next(G)

generators to specify an SA-capable generator for graphs:

graph_sa(N) ->

#{first => graph(N), next => fun (Base, _T) -> graph_next(Base) end}.

Here, the next generator ignores the temperature argument, which
means that temperature scaling is not used and the temperature
only affects the acceptance probability Praccept.

The temperature is controlled by a temperature function (TF).
We provide four different temperature functions: a linear decreasing
TF and three versions of re-heating ones. The linear decreasing
TF decreases the temperature linearly from 1.0 to 0.0. This works
well for most applications. An issue with this approach however
is that the temperature is high for a long time in the beginning.
This means that bad solutions are accepted with a high probability
and the distance between tested solutions is also high. In such a
situation, a very good solution might not be pursued because one
of the next-worse solutions is accepted.

Re-heating TFs try to address this issue by decreasing the temper-
ature much faster. Since this can easily result in getting a situation
where SA is getting stuck in a local optima, re-heating strategies
also increase the temperature if no new solution has been accepted
in a certain number of attempts. Re-heating also has the advantage
in that it lets the search escape local optima that have larger ex-
tends [5]. Target provides three different temperature functions
(fast, very fast, and delayed re-heating) that utilize re-heating. It is
also possible to use a user-defined temperature function instead.

Target comes with a library containing SA-capable generators
(initial generator and neighborhood function) for some basic data
types. Formore complicated input the user of Target has to provide
these generators. Using Targetwith the SA search strategy reduces
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the user’s responsibility of having to provide a fitting neighbor-
hood function to a generator. Implementing such a neighborhood
function for more complex input can occasionally be difficult. We
are however confident that this process can be automated.

5 TARGET: MORE FORMAL PRESENTATION

We now define targeted property-based testing and strategies more
formally. In PBT we can define the input as i ∈ I , where I is the set
of all possible inputs. If we test the property p with the input i the
property either holds or fails, i.e., p : I → {true, f alse}.

The Target framework extends this notion by adding the utility
value u ∈ U to the result of p:

p : I → U × {true, f alse}

Further, we define in ∈ In as a vector containing all n previously
tested inputs and un ∈ U n as the vector containing the associated
utility values. We define a Target as:

T : In ×U n → I

Usually it is not possible to obtain an explicit version of the
utility function (UF), especially if we cannot model the SUT pre-
cisely. Given a sufficient sample set of UVs, it however possible to
approximate the underlying UF.

It is up to the tester to extract the UVs from the running code that
tests a specific property. We assume that inputs with higher UVs
have a higher probability of being a counterexample than inputs
with lower UVs.

Using Target, the property has to be expressed as follows:

∀i ∈ Input, f (i ) < t

The parameter t is a fixed threshold. The function f should run the
SUT with the input and extract the UV that is to be maximized and
is in fact the utility function.

A specific implementation of the target function T is called a
strategy. The targeted property-based testing framework we de-
scribe here is not limited to a single strategy but is designed to
be general enough to support a wider variety of methods to fit
different application requirements.

When using the simulated annealing strategy in Target, the
target function Tsa is implemented by the neighborhood func-
tionN . The input for the neighborhood function is the last solution
that was accepted by the simulated annealing algorithm:

Tsa (in ,un ) =

{
select a random i ∈ I if n = 0
last accepted i from in → N (i ) otherwise

Similarly, the hill climbing strategy Thc can be defined as follows:

Thc (in ,un ) =

{
generate_sample(First(N))) if n = 0
k : unk = max n

j=0u
n
j → R (i

n
k ) otherwise

R (x ) = Next(x)

6 CASE STUDIES

We now evaluate targeted property-based testing and Target by
comparing its effectiveness to guide the input generation with
random property-based testing in three case studies. All tests were
run on a laptop with an Intel Core i7-4600U CPU (2.10GHz) and
8 GB of RAM. However, only one core of the machine was used.

6.1 Energy Efficiency of MAC Protocols

Energy efficiency is an important part of sensor network applica-
tions. During deployment, it is crucial to preserve the battery of
the nodes in order to maximize their lifetime.

In prior work [18], we described how random property-based
testing can be used to test the energy efficiency of network con-
figurations using different implementations of MAC protocols. In
a similar spirit, we generate random sensor networks consisting
of UDP server and client nodes. The client nodes periodically send
messages to the server nodes. We then record the duty cycle for
each node in the network over a fixed period of time. The property
we want to hold is that for a given network, no node has a duty
cycle more than a threshold. (A more detailed description of the
experimental setup using Contiki OS and the Cooja simulator is
given in the paper by Löscher et al. [18].)

Testing sensor networks in a simulator can be costly since besides
the software that we want to test also the hardware of the sensor
nodes and the (radio) environment for communication needs to be
simulated. Finding a counterexample that achieves a duty cycle of
more than 10% for at least one node required only between 10 and 40
test runs. The property is much harder to falsify if the threshold is
higher. The problem here is similar to the longest path problem we
saw before. Additional connections in the network topology can
allow messages to take a more efficient route to the server, relieving
the other nodes in the system.

The more efficient exploration of the input space as done by
Target leads to a higher confidence in the system’s correctness for
a lower number of runs. Moreover Target is capable of finding con-
figurations that falsify the property with a smaller number of runs
whereas a completely random input generation requires a much
higher amount of runs. This issue gets amplified in performance
by the high cost for testing each run in the simulator.

Let us describe how we used Target to guide the generation of
the random sensor networks towards one with a high duty cycle.
We chose a duty cycle of 25% as threshold. This means that input
that achieves a duty cycle of more than 25% for at least one of the
nodes will falsify the property. We then compare the performance
with random property-based testing.

The property used to test the duty cycle with Target is based on
the original property; see Fig. 3 that shows in red color the differ-
ences from the original code of the property. To use Target, all we
need to do is to modify the property in order to specify the search
strategy and the utility value of the input generation. This is done
by wrapping the property by ?TARGET_STRATEGY(simulated_annealing,

...). The utility value is the maximum duty cycle since that is
the value we want to maximize. We can specify this by adding
?MAXIMIZE(MaxDutyCycle). Finally, we need to specify the target gener-
ator according to the search strategy. Simulated annealing, as used
here, needs a generator for the initial graph along with a specifica-
tion of the neighborhood function for graphs. A graph is a complex
data structure which results in a rather complex neighborhood
function. Let us describe this function as used in the property.

Let G = (V ,E) be a graph where V is a set of vertices and E =
V × V are the edges. The order of the graph is |V | and the size
of the graph is |E |. We define a graph Gnext = N (G ) as a graph
(Vnext,Enext) that has an altered set of vertices and edges. The order
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Figure 4: The achieved duty cycle (y-axis) with random PBT (left) and Target with Simulated Annealing (right) varying the

number of tests (x-axis). The graphs also show that Target requires significantly less tests to find a counterexample.

1 prop_duty_cycle_below_threshold() ->
2 ?TARGET_STRATEGY(simulated_annealing,
3 ?FORALL({Motes, Links}, configuration(),
4 begin
5 ok = setup()
6 {running, Handler} = nifty_cooja:state(),
7 initialize_simulation(Handler, Motes, Links),
8 SimTime = 120 * 1000, % simulate for 2 minutes (120 secs)
9 ok = nifty_cooja:simulation_step(Handler, SimTime),
10 MaxDutyCycle = max_duty_cycle(Handler, Motes),
11 ok = nifty_cooja:exit(),
12 ?MAXIMIZE(MaxDutyCycle),
13 MaxDutyCycle < 0.25 % check that is below 25%
14 end)).
15
16 configuration() ->
17 ?LET({V, E}, ?TARGET(sa_graph()), {motes(V), links(E)}).
18
19 sa_graph() ->
20 #{first => graph(), next => sa_graph_next()}.

Figure 3: Property that checks whether the duty cycle of

a sensor network is below a certain threshold (here 25%).

The red parts show the additional code required to use the

Target framework in PropEr compared to random PBT.

of the altered graph is

ordernext = N (order ) (1)

and vadd,vdel ∈ N are the amounts of vertices we add and delete
from the original graph to achieve the new order. Thus:

ordernext = order +vadd −vdel (2)

And now we can define the set of next vertices as follows:

Vnext = (V ∪A) \ D (3)

where vadd = |A|, vdel = |D | and D ⊆ V ∪A.
By removing some of the vertices we have to adjust the edge set

to contain only valid edges. Furthermore we want the edge set to
also contain edges for the newly added vertices:

Eadd ⊆ (V ∪A) ×A
Edel = {(vi ,vj ) ∈ (E ∪ Eadd,vi ∈ D ∨vj ∈ D)}

Eintermediate = (E ∪ Eadd) \ Edel

(4)

The transition from Eintermediate to Enext works like the transition
from V to Vnext.

1 sa_graph_next() ->
2 fun ({V, E} = _OldInstance, Temperature) ->
3 %% generate new order according to Eq. (1)
4 ?LET(NewSize, tinteger(length(V), Temperature),
5 %% generate add and del operations as in Eq. (2)
6 ?LET({Adds, Dels}, get_op_count(NewSize, length(V), Temperature),
7 %% perform operations according to Eqs. (3) and (4)
8 ?LET({V_Add, E_Add}, add_vs(V, E, Adds, Temperature),
9 ?LET({V_Del, E_Del}, del_vs(V_Add, E_Add, Dels),
10 %% change edges
11 ?LET(NewEdgeSize, tinteger(length(E_Del), Temperature),
12 ?LET({EAdds, EDels}, get_op_count(NewEdgeSize, length(E_Del), Temperature),
13 ?LET(E_EAdd, add_es(V_Del, E_Del, EAdds),
14 ?LET(E_EDel, del_es(E_EAdd, EDels), {V_Del, E_EDel}))))))))
15 end.
16
17 tinteger(Base, Temperature) ->
18 Offset = trunc(0.5 * Base * Temperature) + 1,
19 proper_types:integer(Base - Offset, Base + Offset).

Figure 5: Code to generate the next graph when using the

SA strategy of Target. The generation steps of the neigh-

borhood function correspond to Eqs. (1) to (4).

It is important to note that the size of the parameters involved in
the manipulation of the graph are scaled by the current temperature
of the SA process. This means that under high temperature the next
graph can be more different from the previous one than under low
temperature.

The implementation for the graph generator is similar to the
one used by prop_length_hc which was shown in Fig. 2 with the
difference that the order of the graph is not fixed. Figure 5 shows
the implementation of these definitions as a graph generator for
SA strategy of Target.

To evaluate the effectiveness of the strategy compared to random
PBT we tested the property with and without using the strategy.

Figure 4 shows the achieved duty cycle for one test of the prop-
erty with random property-based testing (the graph on the left) and
with Target using Simulated Annealing (graph on the right). Ran-
dom PBT progressively produces more complex input but the input
generation is not guided otherwise. We can see that the achieved
duty cycle for more complex networks is potentially higher than
the duty cycle for smaller ones. The duty cycle values are spread,
which results in a less thorough exploration of the input space
that potentially yields a higher duty cycle. We can see that already
after around 400 tests random PBT achieves a high duty cycle of
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Figure 6: The y-axis shows a metric of the energy consumption over tests (x-axis). The lines show the minimum (dotted),

median (solid), and minimum (lines) of random PBT (red) in comparison to Target (blue) of the achieved minimums (left

graph) and maximums (right graph) of 1000 runs with 10,000 tests.

around 20%. The graph also shows that this area is not densely
populated by samples. This means that the probability of finding
such an example so early is not high.

When using Target, the search strategy quickly follows the path
of good solutions to produce inputs that yield a high duty cycle;
see the graph on the right of Fig. 4. The more promising input
areas are explored more thoroughly. We can also observe that after
around 300 tests a worse solution was most likely accepted, which
ultimately leads to a duty cycle of more than 25% after 350 tests.

When using random PBT, it took an average of 1188 tests to find
a counterexample and the mean time for each test was 23.5s. Thus,
a counterexample was found only after 7h46m. (These numbers are
the mean over ten runs.) In contrast, Target was able to produce
a counterexample on average after around 200 tests and the mean
time for each test was 40.6s. (We note that the time per test using
Target is higher mainly because Target guides the generation
towards larger networks which require more resources to simulate.)
Thus, Target needed on average only 2h12m to find a counterex-
ample; i.e., it was about 3.5 times faster than random PBT in this
case study.

6.2 Routing Tree for Directional Antennas

With this second case study we wanted to see how well Target
performs when handling complex structured input.

In our experiment we generate the routing tree for a network
of nodes that are connected via a radio connection. The distinct
feature of the radios that the nodes use is that they are SPIDA smart
antennas [23, 25]. In contrast to regular antennas which are omni-
directional (i.e., they have an equal gain in all directions), smart
antennas are antennas that can dynamically control the gain as a
function of the direction. Thus, this type of smart antennas can be
configured to increase the communication range by concentrating
the transmit power in a specific direction. This also results in less
radio interference since devices that are not part of the communi-
cation are less effected. The radios used by SPIDA antennas can
be configured to send or receive radio messages from six different

directions. This means that besides generating a routing tree we
also need sender and receiver directions for each link. Two nodes
can both send and receive on each of their six directions with no
additional energy cost. For the communication between two nodes
we therefore have 36 (six sender directions, six receiver directions)
possible combinations of antenna directions.

Prior to running our tests, we collected experimentally the av-
erage package delivery rate pdravg for each link (and for each of
the 36 possible direction pairs) in a deployment of 40 sensor nodes
equipped with the SPIDA smart radio.

To evaluate how Target performs in comparison with random
PBT we wrote the property to test so that we generate routing trees
with directions for each link. The more total hops the routing tree
has, the more packages need to be forwarded to the root on average.
A low pdravg will result in more re-transmissions. Therefore we
calculate a metric for the energy consumption based on these values.
The metric is calculated by multiplying the sum of hops from each
node to the root of the routing tree, with 1−pdravg . We then instruct
Target to minimize this value:
?TARGET_STRATEGY(simulated_annealing,

?FORALL(Tree, ?TARGET(tree()),

begin

HOPS = get_total_hops(Tree),

PDR_AVG = get_avg_pdr(Tree),

Metric = (1 - PDR_AVG) * HOPS,

?MAXIMIZE(-Metric),

... % condition of the property here

end)).

Here we use Target with the Simulated Annealing strategy to op-
timize the tree towards low energy consumption. We also compare
the number of test runs against random PBT.

The left graph of Fig. 6 plots the maximum, median, and mini-
mum of the achieved minimum energy metrics for 1,000 runs of
10,000 tests using random PBT in comparison to using Target
with SA. While random PBT is able to find decent inputs, Target
is ultimately able to find routing trees with a much lower energy
metric and it does so more often than random PBT.
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Let us now change the ?MAXIMIZE(-Metric) expression to
?MAXIMIZE(Metric) to maximize the metric instead of minimizing it.
This means that we try to produce routing trees and directions that
have a potentially high energy consumption. The generator stays
unchanged. The right graph of Fig. 6 shows the result of 10,000 runs
of the property compared to random PBT. We can see that Target
is able to produce routing trees with an energy consumption that
is much higher much faster. After 1,000 tests the worst run with
Target is already better than the best end result achieved with
random PBT after 10,000 tests. Both generation techniques need
150 seconds to run 10,000 tests on average.

It is of course possible for random PBT to find a solution much
faster since generators produce random instances of input. The
probability for this to happen is however low and the time it takes to
convergence towards a specific goal value is much more consistent
using the Target framework.

6.3 Noninterference

In this last case study, we use Target to test for noninterference.
Hriţcu et al. [15] explored how PBT can be used to aid in the design
of secure information-flow control (IFC) abstract machines. They
showed that by specifying strong properties and a good generation
strategy it is possible to efficiently generate programs that expose
violations of noninterference in simple IFC machines.

A Naive generation, where programs are generated by choosing
a random sequence of instructions independently and uniformly,
does not discover bugs in the definition of IFCmachines quickly and
reliably enough. Therefore, Hriţcu et al. [15] presented a generation-
by-execution (ByExec) strategy that generates programs step-by-
step by adding one machine instruction at a time with the goal
that the newly added instruction will not crash the IFC machine.
The idea behind this is that long running programs explore more
interesting machine states and are more likely to discover bugs in
the machine’s definition. In addition to this step-by-step generation,
the generator picks the instructions with a weighted distribution so
that for example push instructions are more likely to be generated
than noop instructions. (For a more detailed description of the
generator and the IFC machines refer to the article of Hriţcu et al.
[15].) This generation theme fits well into the framework of Target.

We can easily implement the ByExec technique by writing gen-
erators for Target’s simulated annealing strategy. The initial value
is an empty program and a neighboring program is one with an
added instruction. The new instruction is chosen so that it does not
crash or terminate the program, outgoing from the last non-halting
instruction of the prior program. We then only need to maximize
the execution length of the so generated program. The problem
with this is that the resulting programs become very long and their
execution costly. We alleviate this problem by resetting the search
after we reach an execution of 50 instructions. The noteworthy
difference with the original ByExec generator is that not the whole
program is generated at once and then tested. The Target genera-
tor incrementally generates the program by adding one instruction
at a time and testing each intermediate step. Other than that, we
use the same distribution for the instructions as the original ByExec
generator [15].

Table 1: Average times (in msecs) to find a counterexample

for bugs injected to the stack machine of Hriţcu et al. [15].

PBT Target

Naive ByExec List ByExec

ADD 2234.08 312.97 319.86 68.49
PUSH 70.18 9.79 2.75 0.78
LOAD 324028.34 987.91 287.23 135.52
STORE A – 4668.04 1388.09 263.94
STORE B 226.85 8.19 4.24 1.33
STORE C 130.22 10.01 2.76 0.79

MTTF (arithmetic) – 999.48 334.16 78.48
MTTF (geometric) – 102.44 40.05 11.25

As a second Target generator we use a generic List generator
with simulated annealing. This generator is based on creating neigh-
boring lists by adding and deleting elements to it. This generator
is built-in in Target and can be used “out-of-the-box” simply by
supplying it some information about the type of the list elements.
Similar to the Target ByExec generator, we maximize the execution
length, use the same weighted distribution for the instructions, and
reset the search after generating a program with an execution of 50
or more instructions.

To compare the generators for Target, we re-implemented the
original ByExec and a Naive generation strategy in Erlang instead of
in Haskell and tested them on all bugs of the simple stack machine
of Hriţcu et al. [15]. All bugs were subjected to 1,000 runs of the
property, each run with a maximum of 1,000,000 tests. We recorded
the average time to find each bug in milliseconds. The Naive gener-
ator was unable to find a counterexample for the “STORE A” bug.

Table 1 shows the measured times along with the arithmetic and
geometricmean times to failure (MTTF).We can see that theTarget
ByExec generator outperforms random PBT using the ByExec gen-
erator. This is not surprising as it implements the same generation
strategy as the regular ByExec generator but tests more intermediate
steps. This has similar advantages as strengthening the test prop-
erty as discussed in the journal article [15]. Both implementations
of ByExec required only around 30 lines of generator code.

Even more noteworthy is that the Target List generator per-
forms surprisingly well. It is slower than the specialized Target
ByExec generator but faster than random PBT using ByExec, which
is more sophisticated generation strategy but hard-coded instead
of being guided by a search strategy. In contrast to theByExec gen-
erator, the List generator needs very little effort to write: it is just a
modified version of the Naive generator where the standard gener-
ator for lists is exchanged with the one from the Target library.

This case study shows that targeted PBT can be efficiently ap-
plied to a complex problem domain like the generation of programs
with certain properties. It also shows that not all domains need a
specialized SA-capable generator. Generic configurable generators
like Target’s List generator can significantly reduce the implemen-
tation effort that is required by the programmer and also offer good
testing effectiveness.
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7 RELATEDWORK

The idea of using a high-level language for writing properties and
generators for property-based testing originated by the pioneering
work of Claessen and Hughes [11] on the QuickCheck library for
the lazy functional language Haskell back in 2000. Nowadays, a
wide variety of programming languages come with similar PBT
tools [27]. In the context of Erlang alone, the high-level program-
ming language that we use in this paper to express the properties
to test and their inputs, three such tools are available: a commer-
cial one by QuviQ [4] and two open-source ones: Triq [28] and
PropEr [26], on which Target is based. These tools have been suc-
cessfully applied to test a wide variety of systems such as telecom
systems [4], web services [17], protocols used in cars, and recently
sensor networks [18]. Our Target framework is directly applicable
to all these areas. Note that we use PropEr (and Erlang) only as
a language to write properties and generators. The SUT need not
be written in Erlang; for example, the sensor network applications
that we used as case studies are written in C.

Search-based testing also has a long history. Its first ideas can be
traced back to a 1976 paper by Miller and Spooner [21]. Since then
search-based testing techniques have been applied to a wide variety
of testing areas [1, 14, 20, 24] including structural testing, model-
based testing, stress testing, non-functional testing, integration
testing, and test-suite generation, among others. However, to the
best of our knowledge, our work is the first one that tries to embed
search-based testing ideas into a general environment for property-
based testing.

EvoSuite [12] is a framework for automated unit test genera-
tion that is based on search-based software testing. The framework
generates and optimizes whole test suites towards coverage cri-
teria. EvoSuite suggests test oracles by adding assertions to the
generated test cases that capture the current behavior of the SUT.
The developer can then detect deviations from the intended system
behavior to the current one by inspecting these assertions. EvoSuite
is fully automated and operates on Java byte-code level. In contrast
to EvoSuite, targeted property-based testing is a black-box testing
technique. It is focused on efficient input generation for high-level
properties, which can be written in a language different than that
of the SUT, and uses user-defined optimization criteria (the utility
values). This allows Target to guide the input generation efficiently
even for very complex input domains like network topologies or
programs. Furthermore, Target can be used to test non-functional
properties like timing, performance, or resource consumption.

Luck [16] and UDITA [13] are languages for test data generation.
In Luck generators are automatically derived from predicates us-
ing a hybrid approach that combines narrowing based techniques
with constraint solving. The predicates are decorated with annota-
tions that allow control over the amount of constraint solving that
happens and the distribution of the generated values. UDITA is a
Java-based language with non-deterministic choices for test gener-
ation. UDITA provides bound-exhaustive testing (e.g., all trees with
up to n nodes) and offers different exploration strategies like ran-
dom, depth-first, and breath-first. In contrast to Luck and UDITA,
Target provides search strategies that guide the generation process
towards promising values. It would however be possible to combine

both approaches and use a language like Luck or UDITA to specify
the neighborhood function for Target’s SA strategy.

Adaptive random testing (ART) [8, 9], restricted random test-
ing (RRT) [6], and quasi-random testing (QRT) [10] are forms of
enhanced random testing that seek to distribute test cases more
evenly within the input space to maximize test case diversity. They
are based on the assumption that non-point failure types are easier
to detect by an even spread of test cases. ART distributes the test
cases based on a distance measurement and favors test cases that
are far away from all previously generated ones. RRT defines exclu-
sion zones around previously generated test cases and generates
new test cases outside these zones. QRT utilizes low-discrepancy se-
quences in an n-dimensional hyper-cube that spread more evenly in
underpopulated areas of the cube. There have been various improve-
ments of these techniques especially of ART [7, 19]. On the other
hand, a more recent study by Arcuri and Briand [3] has pointed out
several shortcomings (high cost, only effective under high failure
rates, etc.) of the ART technique.

Compared to targeted property-based testing, ART focuses en-
tirely on the input domain without taking into account feedback
from the test execution.We also point out that ART (and its RRT and
QRT variants) can be implemented as search strategies in Target.
Such strategies would however ignore the utility values.

8 CONCLUDING REMARKS

We introduced targeted property-based testing, a testing technique
that extends property-based testing with a search-based compo-
nent for more effective generation of inputs when the properties
to be checked have a form that involve a utility value that we
seek to maximize or minimize. Moreover, we showed the ability
of our Target framework to explore the input space effectively
while maintaining a high-level and expressive language for spec-
ifying properties. Through three different case studies, two from
the domain of networks and one related to secure information-flow
control, we demonstrated that Target is able to generate com-
plex structured input and showed how complicated properties of
network configurations and security can be tested.

As mentioned, Target is an integrated component of PropEr
and currently supports two built-in search strategies. However, it
is also an extensible framework where users can easily define their
own search strategies if they wish or need to.
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