
Targeted	Property-Based	Testing
Andreas	Löscher	and	Konstantinos	Sagonas

Department	of	Information	Technology,	Uppsala	University,	Sweden

Setup

Assignment	Files:

Gist	with		magic.erl	,		spells.erl	,	and	this	assignment
proper.tar.gz

Download	the	assignment	files	and	unpack	the	linked	version	of	PropEr.	Build	PropEr	and	set	the
	ERL_LIBS		environment	variable	to	PropEr's	path.	Check	that	everything	is	installed	correctly:

$	export	ERL_LIBS=/path/to/proper/

$	erl

Erlang/OTP	20	[erts-9.0]	[source]	[64-bit]	...

Eshell	V9.0		(abort	with	^G)

1>	l(proper).

{module,proper}

2>	proper:module_info(compile).

[{options,[debug_info,

											{warn_format,1},

											warn_export_vars,warn_obsolete_guard,warn_unused_import,

											warn_missing_spec,warn_untyped_record,

											{i,"include"}]},

	{version,"7.1"},

	{source,"/path/to/proper/src/proper.erl"}]

3>	c(magic).

{ok,magic}

4>	c(spells).

{ok,spells}

Simulated	Annealing

Simulated	annealing	(SA)	is	a	local	search	meta-heuristic	and	the	default	search	strategy	used	by
PropEr	in	the	extension	for	targeted	property-based	testing.

SA	starts	with	a	random	initial	input	from	the	input	space	and	sets	it	as	currently	accepted	input.
During	each	search	step	SA	produces	a	random	neighboring	input	and	accepts	it	if	the	associated

https://gist.github.com/TheGeorge/8f3f2b45d501b1d3dd657f57c576b74b
https://www.dropbox.com/s/5a6wyoxznmra378/proper.tar.gz?dl=0

fitness	is	higher	than	the	one	of	the	currently	accepted	input.	It	also	accepts	worse	inputs	with	a
probability	that	is	dependent	on	the	current	temperature.	The	higher	the	temperature,	the	higher
the	probability	that	a	worse	input	is	accepted.	The	temperature	typically	decreases	as	the	search
goes	on	(see	Wikipedia).

The	neighboring	input	is	generated	by	a	neighborhood	function	that	given	a	base	input	and	a
temperature	produces	a	random	input	that	is	similar	(in	the	neighborhood)	to	the	base	input.	The
quality	of	the	neighborhood	function	is	important	for	the	efficiency	of	the	search:

If	the	neighborhood	is	very	large	the	input	space	can	be	traversed	fast,	but	the	search	might
degrade	to	random	testing.	With	a	large	neighborhood	it	can	also	take	many	steps	to	narrow
down	to	a	good	input	that	is	otherwise	close	in	the	input	space	of	an	already	accepted	input.
If	the	neighborhood	is	very	small,	the	search	can	usually	narrow	down	fast	input	that	is
close/similar.	However,	it	might	require	many	steps	to	reach	other	parts	of	the	input	space	or
to	escape	local	optima.

It	is	possible	to	reduce	the	size	of	the	neighborhood	function	during	the	search	using	the
temperature	parameter.	This	can	sometimes	be	useful.	In	many	cases	it	is	sufficient	or	better	to
keep	the	neighborhood	size	constant.

Magic

We	want	to	design	a	role-play	game	(RPG)	where	our	character	has	some	attributes	like	strength
and	intelligence	(see	Wikipedia)	that	affect	how	well	actions	are	performed.	A	strong	character	will
typically	be	better	at	fighting	and	an	intelligent	character	will	be	better	at	using	magic.

A	record	stores	the	attributes	for	a	player:

-record(attr,	{strength					=	0	::	integer(),

															constitution	=	0	::	integer(),

															defense						=	0	::	integer(),

															dexterity				=	0	::	integer(),

															intelligence	=	0	::	integer(),

https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Attribute_(role-playing_games)

															charisma					=	0	::	integer(),

															wisdom							=	0	::	integer(),

															willpower				=	0	::	integer(),

															perception			=	0	::	integer(),

															luck									=	0	::	integer()}).

A	newly	created	character	gets	some	initial	attributes:

-spec	new_character()	->	attr().

new_character()	->

		#attr{strength					=	5,

								constitution	=	5,

								defense						=	5,

								dexterity				=	5,

								intelligence	=	5,

								charisma					=	5,

								wisdom							=	5,

								willpower				=	5,

								perception			=	5,

								luck									=	5}.

Furthermore	we	want	our	RPG	to	have	a	spell-based	system	that	allows	us	to	customize	these
attributes.	The	player	can	cast	a	spell	that	will	reduce	some	of	these	attributes	and	increase
others.	But	spells	are	fragile	things	and	can	behave	unexpectedly	and	wild	when	cast	together
with	other	spells.	A	seemingly	useful	spell	can	have	dire	consequences.

Our	spell	attribute	API	also	contains	the	function		cast_spells(Attrs,	Spell)		that	calculates	the
resulting	attributes	after	a	list	of	spells	is	cast.	If	when	casting	a	spell	a	player	does	not	have
enough	points	in	attributes	than	need	to	be	reduced,	the	spell	has	no	effect	on	the	attributes	but
might	have	othe	hidden	effects.

In		spells.erl		there	is	a	list	of	spells	for	our	RPG.

PropEr	Spells

With	the	spells	in	place,	how	can	we	make	sure	that	a	player	cannot	exploit	our	spell	system	and
get	lets	say	get	three	times	as	good?	We	can	specify	a	property	to	test	for	this	type	of	exploit	as
follows:

prop_spells()	->

		?FORALL(Spells,	list_of_spells(),

										begin

												InitialAttr	=	spells:new_character(),

												BuffedAttr	=	spells:cast_spells(InitialAttr,	Spells),

												SumAttr	=	spells:sum_attr(BuffedAttr),

												SumAttr	<	3	*	spells:sum_attr(InitialAttr)

										end).

We	create	a	new	character	and	then	cast	a	random	list	of	spells.	Then	we	calculate	the	total
number	of	attributes	with		sum_attr(Attrs)		and	check	if	the	spells	somehow	managed	to	triple
them	compared	to	the	initial	attributes.	The	generator		list_of_spells()		looks	like	this:

list_of_spells()	->

		list(proper_types:noshrink(oneof(spells:spells()))).

Note	that	we	don't	want	PropEr	to	shrink	the	values	inside	the	spell	records.	We	can	prevent	that
by	wrapping	the	generator	with		proper_types:noshrink()	.

If	we	test	this	property	now	with	PropEr,	we	will	see	that	the	property	holds	for	all	randomly
generated	inputs	even	if	the	number	of	tests	is	very	big:

1>	proper:quickcheck(magic:prop_spells(),	100000).

....	100000	dots	...

OK:	Passed	100000	test(s).

true

So	all	is	well…	only	it	actually	ISN'T.	There	does	exist	at	least	one	list	of	spells	that	can	lead	to
such	unlimited	power.

Targeted	Magic
We	can	change	prop_spells()	to	make	use	of	a	targeted	search	strategy
as	follows:

prop_spells_targeted()	->

		?FORALL_SA(Spells,	?TARGET(list_of_spells_sa()),

													begin

															InitialAttr	=	spells:new_character(),

															BuffedAttr	=	spells:cast_spells(InitialAttr,	Spells),

															SumAttr	=	spells:sum_attr(BuffedAttr),

															?MAXIMIZE(SumAttr),

															SumAttr	<	3	*	spells:sum_attr(InitialAttr)

													end).

We	added	the	following	elements:

	FORALL_SA		specifies	simulated	annealing	as	search	strategy
	?TARGET		tells	the	strategy	that	it	should	generate	input	according	to		list_of_spells_sa()	
	?MAXIMIZE		specifies	the	search	goal.	In	this	case	we	want	to	maximize	the	attributes	our
character	has	after	casting	the	spells.

Now	we	just	need	to	tell	simulated	annealing	how	to	generate	the	first	element	and	which
neighborhood	function	it	should	use:

list_of_spells_sa()	->

		#{first	=>	list_of_spells(),

				next	=>	fun	list_of_spells_next/2}.

We	can	use	the	random	generator		list_of_spells()		for	the	first	element.

Task

Implement	a	neighborhood	function	in		list_of_spells_next()		for	lists	of	spells.

The	task	is	to	implement	the	neighborhood	function	in		list_of_spells_next()		so	that	the
property		prop_spells_targeted()		fails	after	a	reasonable	amount	of	time.

When	writing	the	neighborhood	function	you	can	make	full	use	of	PropEr's	language	for	defining
custom	generators	(see	PropEr	API	for	defining	generators)):

list_of_spells_next(PreviousSpells,	Temperature)	->

		?LET(SomeInteger,	integer(),	...).

The	first	element	of	the	neighborhood	function	is	the	base	input.	The	temperature	parameter	is	of
type		float()		and	decreases	linearly	from		1.0		to		0.0		with	the	tests.

After	you	have	implemented	the	neighborhood	function	you	can	test	the	property	with	PropEr:

1>	c(magic).

{ok,	magic}

2>	proper:quickcheck(magic:prop_spells_targeted(),	100000).

...

http://proper.softlab.ntua.gr/doc
http://proper.softlab.ntua.gr/doc/proper_types.html

Make	sure	that	with	your	neighborhood	function	finds	a	counterexample	consistently	and	that	the
search	does	not	get	stuck	for	some	runs.	(You	can	check	this	by	e.g.	repeat	the	test	for	the
property	100	times.)

Some	remarks:

Do	not	change	the	API	in		spells.erl		or	the	property	(prop_spells_targeted())
The	whole	input	space	must	be	reachable	by	consecutive	calls	of		list_of_spells_next()	.
This	means	that	lists	should	be	able	to	grow	and	shrink	in	size.
Use	the	temperature	argument	only	if	necessary.
Even	with	targeted	PBT	the	amount	of	tests	needed	can	be	in	the	few	thousands	but	a
counterexample	should	be	found	in	under		20000		tests	depending	on	your	neighborhood
function.
The	time	to	failure	is	more	important	than	the	amounts	of	tests	needed	to	fail	the	property.
If	you	neighborhood	function	does	not	perform	good	analyze	what	is	going	on:

Do	the	lists	grow/reduce	in	size?
What	is	the	value	of		SumAttr	?	Maybe	you	just	need	a	few	more	tests.
Can	a	neighbor	delete	spells	at	the	end/start/middle	of	the	spell	list?
…

