
AUTOMATING
TARGETED PROPERTY-BASED TESTING

Andreas Löscher, Konstantinos Sagonas

andreas.loscher@it.uu.se, kostis@it.uu.se

Department of Information Technology

Uppsala University

Sweden

mailto:andreas.loscher@it.uu.se
mailto:kostis@it.uu.se

Property-Based Testing

• High-level, semi-automatic, black-box testing
technique.

• Testing user-specified properties of the SUT.

• Examples:
– QuickCheck (Haskell)

– ScalaCheck (Scala)

– PropEr (Erlang)

– …

Random
Property-Based Testing

• PBT tool provides:

– Random generators for basic types.

– Language to write more complex generators.

• PBT tool automatically tests these properties:

– Generates wide range of random inputs.

– Runs the SUT with these inputs.

– Checks if the properties hold.

Random
Property-Based Testing

Generator

PropertyProperty should hold for all L

prop_list_reverse() ->
 ?FORALL(L, list(integer()),
 lists:reverse(lists:reverse(L)) == L).

Random
Property-Based Testing

L=[]
L=[2]
L=[-5,-1,-8,1]
L=[16,3,-23]
L=[38,29,-28,12,-11,-3,-28,-6,9,-16,4,4]
…

1> proper:quickcheck(example:prop_list_reverse(), 1000).
................... 1000 dots
OK: Passed 1000 test(s).

PBT of Sensor Networks

Setup:
• Sensor network
• Random distribution of UDP server and client nodes
• Client node periodically sends messages to server node

Test:
• Has X-MAC for any network a
 duty-cycle > 25%?

(duty-cycle ::= % time the radio is on)

User-defined Generators

graph(N) ->
 Vs = lists:seq(1, N),
 ?LET(Es, list(edge(Vs)), {Vs,lists:usort(Es)}).

edge(Vs) ->
 ?SUCHTHAT({V1, V2}, {oneof(Vs), oneof(Vs)},
 V1 < V2).

A generator for random graphs with N nodes:

Great: We can easily generate random sensor networks!

Distance from Sink

On this graph, the maximum distance to sink is 4

Is there a large network with N nodes where
the maximum distance to the sink > N/2?

Distance from Sink

prop_max_distance(N) ->
 ?FORALL(G, graph(N),
 begin
 D = lists:max(distance_from_sink(G)),
 D < (N div 2)
 end).

2> proper:quickcheck(demo:prop_max_distance(42)).
.......... 100 dots
OK: Passed 100 tests
true
3> proper:quickcheck(demo:prop_max_distance(42), 100000).
.......... 100000 dots
OK: Passed 100000 tests
true

Possible Solutions

• Write more involved (custom) generators?

• Guide the input generation:

use a search strategy, and

introduce a feedback-loop in the testing.

Targeted
Property-Based Testing

• Combines Search Techniques with Property-Based
Testing.

• Automatically guides input generation towards inputs
with high probability of failing.

• Gather information during test execution in the form of
utility values (UVs).

• UVs capture how close input came to falsifying a
property.

Targeted
Property-Based Testing

prop_max_distance(N) ->
 ?FORALL_TARGETED(G, graph(N),
 begin
 D = lists:max(distance_from_sink(G)),
 ?MAXIMIZE(D),
 D < (N div 2)
 end).

Now prop_max_distance(42) fails after 1,548 tests
(on average).

Utility
Value

Targeted
Property-Based Testing

• Returns a neighbor (similar value) to a given Base value

• Neighbor distance can be scaled by the Temperature

Simulated Annealing requires a Neighborhood Function (NF)

 nf(Base, Temperature)

Hand-written NF

graph_next(G, _T) ->
 Size = graph_size(G),
 ?LET(NewSize, neighboring_integer(Size),
 ?LET(Additional, neighboring_integer(Size div 10),
 begin
 {Removals, Additions} =
 case NewSize < Size of
 true ->
 {Additional + (Size - NewSize), Additional};
 false ->
 {Additional, Additional + (NewSize - Size)}
 end,
 ?LET(G_Del, remove_n_edges(G, Removals),
 add_n_edges(G_Del, Additions))
 end)).

Hand-written NF

graph_size({_, E}) -> length(E).

neighboring_integer(Base) ->
 Offset = trunc(0.05 * Base) + 1,
 ?LET(X, proper_types:integer(Base - Offset, Base + Offset),
 max(0, X)).

add_n_edges({V, E}, N) ->
 ?LET(NewEdges, proper_types:vector(N, edge(V)),
 {V, lists:usort(E ++ NewEdges)}).

remove_n_edges({V, E}, 0) -> {V, E};
remove_n_edges({V, []}, _) -> {V, []};
remove_n_edges({V, E}, N) ->
 ?LET(Edge, proper_types:oneof(E),
 ?LAZY(remove_n_edges({V, lists:delete(Edge, E)}, N - 1))).

Neighborhood Function

• Neighborhood functions are significantly harder to
write than random generators

31 vs 5 lines of code

• Must preserve all constraints and invariants of the
input

• Makes TPBT difficult to use

Automating Targeted
Property-Based Testing

● Construct the neighborhood function automatically
from a random generator:

– Random generator is problem-specific.

• Idea:

– Reenact the decisions of the random generator.

– Instead of choosing variables randomly, we
choose values in the neighborhood of the
previously generated one.

Example: Edge Generator

edge(Vs) ->
 ?SUCHTHAT({V1, V2}, {oneof(Vs), oneof(Vs)},
 V1 < V2).

Vs = [1,2,3,4,5,6,7,8,9,10]

Base Value: {4,8}

Tuple Generator

Rule - for each element:
• Generate a random new element
• Generate a neighbor, or
• Leave as it is

Constraint

Example: Edge Generator

edge(Vs) ->
 ?SUCHTHAT({V1, V2}, {oneof(Vs), oneof(Vs)},
 V1 < V2).

Vs = [1,2,3,4,5,6,7,8,9,10]

Base Value: {4,8}

Tuple Generator

Leave as it is Change to a neighbor

Example: Edge Generator

edge(Vs) ->
 ?SUCHTHAT({V1, V2}, {oneof(Vs), oneof(Vs)},
 V1 < V2).

Vs = [1,2,3,4,5,6,7,8,9,10]

Base Value: 8

oneof Generator

Rule - exchange to a random element

 Neighbor: 5

Constraint

Example: Edge Generator

edge(Vs) ->
 ?SUCHTHAT({V1, V2}, {oneof(Vs), oneof(Vs)},
 V1 < V2).

Vs = [1,2,3,4,5,6,7,8,9,10]

Base Value: {4,8} Neighbor: {4,5}

Tuple Generator

• Check constraint:
• If fullfilled: done
• Else: retry

Automating Targeted
Property-Based Testing

• Rules for all built-in types of PropEr.

• More complex types (constructed with ?LET) require some
additional techniques:

– Matching

– Caching

• It is possible to adjust the generation process by overwriting
rules with own ones.

Limitations

● Certain nested generators with multiple ?LET
– if the constraints for the inner generators depend on

values generated by the outer generators.

• Recursive generators.

Setup:

• Sensor network.

• Random distribution of UDP server and client nodes.

• Client node periodically sends messages to server node.

Test:

• Has X-MAC for any network a

 duty-cycle > 25%?

(duty-cycle ::= % time the radio is on)

PBT of Sensor Networks

Case Study 1

Random PBT
• Mean Time to Failure: 7h46m

Targeted PBT with hand written NF (100 loc)
• Mean Time to Failure : 2h12m

Targeted PBT with constructed NF
• Mean Time to Failure : 2h19m

Case Study 2

• Definitions for an abstract machine.

• Test: Do these definitions fulfill a certain security criteria?

(Noninterference)

Cătălin Hriţcu, et al. "Testing noninterference, quickly." Journal of Functional
Programming, 26 (2016).

Case Study 2

• Random PBT - Sequence: programs are a random list of
instructions chosen with a fine-tuned weighted distribution

• Targeted PBT - List: hand written NF for lists; list elements
are either added new or removed

• Targeted PBT – Constructed: constructed NF from the
Sequence generator

Random PBT Targeted PBT

Sequence List

ADD 5800,57 271,68

LOAD 7764,15 341,30

STORE A 16997.81 2634,80

Random PBT Targeted PBT

Sequence List Constructed

ADD 5800,57 271,68 489,93

LOAD 7764,15 341,30 447,25

STORE A 16997.81 2634,80 3685,32

User Study

● We asked students from an advanced functional
programming course (M.Sc.) to program a NF for testing a
targeted property.

● All students were familiar with random and targeted PBT.

● Compared the hand-written NFs to the constructed one.

User Study

Lines of Code

TTF
(secs)

http://proper.softlab.ntua.gr/

	automating Targeted Property-based Testing
	Property-Based Testing
	Random Property-Based Testing
	Random Property-Based Testing
	Random Property-Based Testing
	Slide 6
	Graph Generator
	Distance From Sink
	Distance From Sink
	Possible Solutions_clipboard0
	Targeted Property-Based Testing_clipboard0
	Targeted Property-Based Testing
	Targeted Property-Based Testing
	Motivation
	Motivation
	Neighborhood Function
	Automating Targeted Property-Based Testing
	Example: Edge Generator
	Example: Edge Generator
	Example: Edge Generator
	Edge Generator
	Automating Targeted Property-Based Testing
	Limitations
	Slide 25
	Case Study 1
	Case Study 2
	Case Study 2
	User Study
	User Study
	Slide 31

