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Abstract—Targeted property-based testing is an enhanced form
of property-based testing (PBT) where the input generation is
guided by a search strategy instead of being random, thereby
combining the strengths of QuickCheck-like and search-based
testing techniques. To use it, however, the user currently needs
to specify a search strategy and also supply all ingredients that
the search strategy requires. This is often a laborious process and
makes targeted PBT less attractive than its random counterpart.
In this paper, we focus on simulated annealing, the default search
strategy of our tool, and present a technique that automatically
creates all the ingredients that targeted PBT requires starting
from only a random generator. Our experiments, comparing
the automatically generated ingredients to fine-tuned manually
written ones, show that the performance that one obtains is
sufficient and quite competitive in practice.

I. INTRODUCTION

Testing is an integral part of modern software development
as it finds errors in programs and systems and gives confidence
about their correctness. Random property-based testing (PBT)
is a high-level, semi-automatic, black-box testing technique in
which, rather than writing many unit tests by hand, one simply
specifies general properties that the system under test (SUT) is
expected to satisfy, and generators that produce well-distributed
random inputs to the parts of the system that are tested [1], [2].
As with all random testing techniques, the chance of finding an
error and the confidence in the SUT increases with the number
of generated tests. In cases where the input space is large, even
a big number of tests might not be enough to yield a satisfactory
confidence if the inputs are generated (semi-)randomly.

Targeted Property-Based Testing (TPBT) [3] is an enhanced
form of PBT that, instead of being completely random, uses a
search-based component to guide the input generation towards
values that have a higher probability of falsifying a property.
TPBT explores the input space more effectively and requires
less tests to find a bug or achieve a high confidence in the SUT
than random PBT. To use TPBT a user has to specify: (1) a
search strategy that will be used to explore the input space,
(2) a component that supports writing targeted generators,
and (3) utility values (UV) for each input that the generation
process tries to either maximize or minimize.

The search strategy is typically provided by the PBT tool
or a library and can be configured for the task at hand. In
order to be able to guide the generation process, the user needs
to manually provide some ingredients such as information
about how to generate inputs and strategy-specific operators.
Simulated Annealing (SA) for example, the default search
strategy used by PROPER [4], a QuickCheck-inspired tool
with support for targeted PBT, requires the user to specify a

neighborhood function that produces a “next” random input
which is similar to a current one. Such a function is significantly
harder to write than a generator for random PBT.

In this paper, we present a technique for SA that constructs
its main ingredient, namely the neighborhood function (NF),
automatically from an input generator written for random PBT.
This constructed NF can be used as is, and is capable of
producing random neighboring input for all input instances
that the random generator can produce. By using the presented
technique, we can reduce the effort to use TPBT significantly.
In addition to the components needed for random PBT, a user
effectively now only needs to extract the utility values and
specify whether to maximize or minimize them. As we will
show on a series of examples, TPBT performs sufficiently well
with the automatically constructed NF for most applications.
We also describe how random generators can be written so
that the construction process can work to its full potential, and
how the constructed NFs can be adjusted by the user manually.

The rest of the paper is structured as follows. The next section
overviews random PBT, TPBT, and simulated annealing, thus
presenting the background that is necessary to understand the
rest of the paper. In Section III we describe how automatically
constructed NF’s can be used, and describe the algorithm for
constructing them in Section IV. We evaluate the efficiency
of so constructed NF’s against fine-tuned hand-written ones in
Section V, and finish with two brief sections containing related
work and some concluding remarks.

II. BACKGROUND

A. Property-Based Testing

Property-based testing (PBT) is a random testing technique
in which the intended system behavior is expressed by a
description of valid inputs to the SUT and properties that are
expected to hold when the system is subjected to instances of
valid inputs. A PBT tool takes these definitions and successively
generates a number of random inputs, often with increasing
complexity. The tool then subjects the SUT to these inputs and
checks if the outputs falsify the properties or not. Following
this method, a tester’s manual tasks are reduced to correctly
specifying the parameters of the SUT and formulating a set of
properties that accurately describe its intended behavior.

PBT tools operate on properties, which are essentially
partial specifications of the SUT, meaning that they are more
compact and easier to write and understand than full system
specifications. Users can make full use of the host language
when writing properties, and thus can accurately describe a
wide variety of input-output relations. They may also write their
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own custom generators, should they require greater control
over the input generation process. Compared to testing systems
with manually-written test cases, testing with properties is a
faster and less mundane process. The resulting properties are
also much more concise than a long series of unit tests, but,
if used properly, can accomplish more thorough testing of the
SUT by subjecting it to a much greater variety of inputs than
any human tester would be willing or able to write. Moreover,
properties can serve as a checkable partial specification of a
system, one that is considerably more general than any set of
unit tests, and thus one that is much better at exploring a more
significant percentage of behaviors of a system and unveiling
its errors.

We illustrate PBT and explain the language of PROPER [4],
the QuickCheck-inspired tool we use, with a simple example.
prop_compress_decompress() ->
?FORALL(D, data(), zlib:decompress(zlib:compress(D)) == D).

This property expresses that, for any data D, if we compress and
then decompress D with functions provided in a zlib module
that implements this compression library [5] we end up with the
original data. In PROPER, properties begin with prop_, anything
that begins with a ? is a macro corresponding to some operation
that the PROPER tool provides, and anything that starts with a
capital letter (like D here) is a variable. Besides macros, like
the ?FORALL macro, PBT tools come with built-in generators
for the base types of the host language (e.g., integers, lists,
etc.) that can be combined. To further refine these generators
it is possible to specify predicates to constrain their generated
values using appropriate operations (e.g., ?LET, ?SUCHTHAT, etc.).

The paper that introduced targeted PBT [3] showed that it
is difficult for random PBT to find counterexamples in cases
where the input domain is large and inputs that falsify a property
are rare. In these cases, the number of tests that need to be
run in order to find a counterexample or have high confidence
that the SUT behaves as intended can become unfeasible. With
better knowledge of the input domain, the odds of finding a
counterexample can be increased. For example, limiting the
generator to values where a bug is likely to be found increases
the probability of finding an input value that falsifies a property.
However, such generators are more complicated to write and
less general. Typically one generator is shared by multiple
properties and having to write a tailored custom generator for
each property makes PBT testing less attractive.

B. Targeted Property-Based Testing

Targeted property-based testing [3] (TPBT) is an enhanced
form of PBT which is applicable in cases where the property to
test can be expressed as an optimization problem (maximizing
or minimizing a certain measure). In such cases, TPBT guides
the input generation with search strategies instead of generating
them only randomly. It aims to make test outcomes more
consistent and reduce the number of required test runs to find
bugs or to achieve higher confidence in the SUT compared to
random PBT. It uses information gathered during test execution
in the form of utility values (UVs) that specify how close input
came to falsifying a property. TPBT consists of three main

components: (1) the search strategy that is used to explore the
input space, (2) the component that supports writing targeted
generators, and (3) UVs that we want to maximize or minimize.
The UVs are paired with the input to the property. If an input
has a UV beyond the property-specific threshold, then the
property will fail. The difference between this threshold and
the UV is effectively the distance between the input and a
potential counterexample for the property.

The general structure of properties that can be tested with
TPBT, called targeted properties, looks as follows:
prop_Target() -> % Try to check a property
?STRATEGY(SearchStrategy, % for some Search Strategy
?FORALL(Input, ?TARGET(Params), % and for some Parameters

begin % for the input generation.
UV = SUT:run(Input), % Do so by running SUT with Input
?MAXIMIZE(UV), % and maximize its Utility Value
UV < Threshold % up to some Threshold.

end)).

The search strategy generates input for each run and tests the
property with it. Besides running the test with the current input,
the SUT:run() function needs to return the utility value. This UV
is then fed to the search strategy component which uses this
information to produce the next input with an increased UV,
thereby also increasing the chance of falsifying the property.

Most search strategies require additional information about
how the inputs are generated. Simulated Annealing (SA) for
example, the default strategy provided by PROPER for TPBT,
requires the user to specify a generator for the first input and
a neighborhood function (NF).

Let us consider an example [3]. Suppose we want to test
whether a network of nodes performs as expected regardless of
its topology. The input to such a property would be graphs of
a fixed number of vertices (network nodes). Many performance
criteria of networks, like energy consumption or message
latency, are influenced by the number of hops messages need to
take to reach their destination. In our example, let us suppose
that the majority of the messages are going to one dedicated
node, the sink. For simplicity, let us also assume that the SUT
returns the lengths of all shortest paths between the sink and
the other nodes. We can formulate a property that states that
the longest of those paths should not exceed 21 hops (for a
network with 42 nodes). Note that it is very complicated to
write a random generator for graphs that has a good chance of
finding a counterexample in a reasonable amount of time. The
topology of the graph has to have a particular shape which is
only found in a relatively small percentage of the inputs. Using
TPBT however, we can use the length of the longest path to
the sink as UV, and instruct the search strategy to generate
topologies that maximize it. Following the general structure
for targeted properties, we can write the code in Fig. 1. The
?FORALL_SA macro is a targeted variant of ?FORALL, which uses
simulated annealing as search strategy, and thus avoids having
to write an explicit ?STRATEGY line. The ?TARGET macro is used to
mark generators that are under the control of the search strategy.
Simulated annealing requires as ingredients a first input and a
NF, a function that produces input that is in the neighborhood
of the current input (close in the input space). We use an easy



1 prop_length() -> % targeted property
2 ?FORALL_SA(G, ?TARGET(graph_sa(42)),
3 begin
4 UV = lists:max(distance_from_sink(G)),
5 ?MAXIMIZE(UV),
6 UV < 21
7 end).
8

9 graph_sa(N) -> % targeted generator for simulated annealing
10 #{first => graph(N),
11 next => fun graph_next/2}. % see Fig. 2
12

13 graph(N) -> % a simple, general generator for graphs of size N
14 Vs = lists:seq(1, N),
15 ?LET(Es, proper_types:list(edge(Vs)), {Vs, lists:usort(Es)}).
16

17 edge(Vs) -> % auxiliary generator for edges of the graph
18 ?SUCHTHAT({N1, N2}, {oneof(Vs), oneof(Vs)}, N1 < N2).

Fig. 1. Targeted property for graphs of a certain size and its generators.

to write and general generator for random graphs of a certain
number of nodes N (graph(N)) to obtain a random first input
and the function graph_next(), shown in Fig. 2, as NF. With
these ingredients, such a targeted property can find a failing
input after only a few thousand tests and in all runs, whereas
random PBT is unable to find a counterexample even with
hundreds of thousands of tests using the same random graph
generator [3].

C. Simulated Annealing

Simulated Annealing (SA) is a well-studied local search
meta-heuristic [6]–[8] that can be used to address discrete and
continuous optimization problems. The key feature of SA is
a mechanism that enables escaping local optima by accepting
search steps to worse solutions in the hope to find a global
optimum. SA also has another nice property, namely that it
does not depend on the type of data it is operating on. This
allows us to apply SA as a strategy to most types of input.

SA operates on the input space I (the set of all possible
inputs) and a fitness function F : I → f . The fitness of an
input is equivalent to its utility value. Furthermore, SA defines
a NF n that produces random input in the neighborhood N of
a given base input b. n is also dependent on the temperature t:

n(b, t) = v where v ∼ U(N )

SA starts with random initial input from the input space. It
then produces a neighboring input and accepts it as new input
if its associated fitness is higher than that of the current input.
It also accepts worse inputs with a probability that is dependent
on the current temperature t. The higher the temperature, the
higher the probability that a worse solution is accepted. The
acceptance probability is defined as follows:

Pr
accept

(in+1, tn+1) =

{
e
− (un−un+1)

tn+1 if un > un+1

1 otherwise

When choosing SA as search strategy, we need to provide
a generator for I and a NF for the input space we want
to use. It is possible to define this generator and NF using
PROPER’s generator language and pass them as parameters to

1 graph_next(G, _T) ->
2 Size = graph_size(G),
3 ?LET(NewSize, neighboring_integer(Size),
4 ?LET(Additional, neighboring_integer(Size div 10),
5 begin
6 {Removals, Additions} =
7 case NewSize < Size of
8 true -> {Additional + (Size - NewSize), Additional};
9 false -> {Additional, Additional + (NewSize - Size)}

10 end,
11 ?LET(G_Del, remove_n_edges(G, Removals),
12 add_n_edges(G_Del, Additions))
13 end)).
14

15 graph_size({_, E}) ->
16 length(E).
17

18 %% generator for neighboring integer
19 neighboring_integer(Base) ->
20 Offset = trunc(0.05 * Base) + 1,
21 ?LET(X, proper_types:integer(Base - Offset, Base + Offset), max(0,X)).
22

23 add_n_edges({V, E}, N) ->
24 ?LET(NewEdges, proper_types:vector(N, edge(V)),
25 {V, lists:usort(E ++ NewEdges)}).
26

27 remove_n_edges({V, E}, 0) -> {V, E};
28 remove_n_edges({V, []}, _) -> {V, []};
29 remove_n_edges({V, E}, N) ->
30 ?LET(Edge, proper_types:oneof(E),
31 ?LAZY(remove_n_edges({V, lists:delete(Edge, E)}, N - 1))).

Fig. 2. Manually-written neighborhood function for graphs of a certain size.

the ?TARGET macro. For property prop_length(), the initial element
is sampled from the graph(N) generator, and the manually-
written neighborhood function graph_next() is as shown in Fig. 2.
To produce neighboring graphs, the code first decides on a
new graph size and then removes and adds a random number
of edges that achieves the new graph size. A NF for SA as
implemented by PROPER has as first argument the base value
from which a neighbor value will be generated. The second
argument is the current temperature of the SA algorithm.

Notice that the neighborhood function of Fig. 2 is quite
simplistic, as it completely ignores its temperature argument.
Still, its code is about six times as long and, arguably,
significantly more complicated than the code for graph(N). A
random generator produces the whole input data at once while
a neighborhood function usually has to select some part of
the input, alter it slightly, and put everything back together
while preserving all constraints and invariants of the input.
This process can become complicated especially with more
complex input domains. Once written, however, a NF is mostly
independent from the property to test and can be used for all
properties that have the same type of input.

Requiring the programmer to provide a NF for each generator
makes TPBT hard to use and therefore less appealing. Not
only need the users know how to use PROPER’s language to
write custom generators, but they also need to understand how
SA works and how to produce random neighboring inputs for
their tests. It also makes migrating properties to targeted ones
harder. In the next section, we will introduce a technique that
constructs a NF for graphs from a generator like graph(N).



III. USING CONSTRUCTED NEIGHBORHOOD FUNCTIONS

Our aim is to reduce the additional tasks to use TPBT to,
ideally, only specifying the utility values and whether simulated
annealing —or some other search strategy that requires a
neighborhood function— should maximize or minimize them.
To achieve this, the main ingredient we need is a technique
that can construct a NF automatically. We will present such a
technique in the next section. Let us first see how one could
use a constructed NF in targeted properties.

In our tool, the simplest way to specify that we want to
transform a random generator into a NF is to simply mention
the generator we want to use wrapped in a map with a gen key
when defining the targeted property. Using prop_length() as an
example, the code becomes:

prop_length() ->
?FORALL_SA(G, ?TARGET(#{gen => graph(42)}), % the only change is here

begin
UV = lists:max(distance_from_sink(G)),
?MAXIMIZE(UV),
UV < 21

end).

Of course, we still need to provide the graph(N) generator,
whose code however is very simple (Fig. 1), but we do not need
to supply the complicated code of Fig. 2. PROPER takes the
generator definition and constructs a graph_nf(G,T) function that
produces neighboring graphs according to the specifications
in graph(N). The random generator that was used as input for
the construction is utilized by SA to obtain an initial input.
Note that the constructed graph_nf() takes the temperature into
account, in contrast to the hand-written graph_next() of Fig. 2
which ignored that argument.

On the other hand, the constructed NF is a general one and
can be inferior to a carefully crafted hand-written one that is
fitted to the input domain. What is important, however, is that
the automatically obtained NF performs reasonably well so that
SA can work as intended. If we test the above prop_length()

property now with the constructed NF we find a counterexample
after 4, 060 tests on average (measured over 100 runs with a
maximum of 100, 000 tests). While this is worse than the result
achieved with the hand-written NF (1, 548 tests on average) the
performance we get is sufficient for finding a counterexample
in a reasonable time and, most importantly, in all runs. Recall
that random PBT was not able to find a counterexample at all
for this property using the same setting.

The effort needed to use TPBT in this example is reduced
significantly. Instead of writing 30 lines of complicated code
for the neighborhood function, a user only needs to specify
which generator to use. We mentioned earlier that it would be
possible to also find a counterexample with random PBT if
we were to write a more complicated random generator. Using
TPBT and an automatically constructed NF allows us to use a
simpler and easier to understand generator instead.

In some cases, the user might have special knowledge about
the input domain that she wants to use when implementing the
NF. However, writing the whole NF by hand can be intricate,
because it is necessary to implement the neighborhood relation

for all parts of the generator. The task becomes even more
complicated if the temperature should be taken into account
when producing the next input. Therefore, our tool provides
an interface to inspect the constructed NF so that it can be
further refined and/or used as part of a hand-written NF.

In Fig. 2, the code of graph_next() uses the function
neighboring_integer() to produce non-negative integers neighbor-
ing a given base integer. We can translate the built-in generator
non_neg_integer() of PROPER and use it instead of the hand-
written function as follows:
graph_next(G, T) ->
Size = graph_size(G),
NfInt = proper_sa:get_neighborhood_function(non_neg_integer()),
?LET(NewSize, NfInt(Size, T),

?LET(Additional, NfInt(Size div 10, T),
begin
...
end).

As a positive side effect, we can now scale the size of the
neighborhood for the integers with the temperature in the NF.

Alternatively, it is also possible to adjust the construction
process by overwriting the construction rules for some of the
inner generators (e.g., the element generator of a list) with a
user-defined one. This is done by annotating a random generator
with a hand-written NF. If the constructor needs to build a NF
for the annotated generator, the manually written one is used
instead, which allows us to change the behavior for parts of
the resulting NF. Let us assume we want to write a NF for
lists of integers where the elements should only change by ±1
during each search step. We can easily write a NF for integers
that behaves in that way:
integer_pm_one(B, _) ->
oneof([B+1, B-1]).

Writing by hand a NF for the list part of the input is more
complicated, and we want to use the constructor instead. We
use a random generator for lists of integers as basis and, using
the ?USERNF macro, we annotate the element generator with
our manually written NF integer_pm_one(). We then use the
constructor to produce a NF with the desired behavior:
integer_list() ->
list(?USERNF(integer(), fun integer_pm_one/2)).

prop_sth() ->
?FORALL_SA(L, ?TARGET(#{gen => integer_list()}), ...).

The property prop_sth() passes the annotated random gen-
erator integer_list() to the constructor to build the NF. The
resulting integer_list_nf(), which is constructed in memory,
will produce neighboring integer lists with the property that
if list elements are modified, they are passed to the manually
written integer_pm_one() that offsets them by ±1. The ability to
adjust the construction to the requirements of the input type
provides the user with additional control and most of the time
makes it unnecessary to write the entire NF by hand.

IV. CONSTRUCTION ALGORITHM

In this section, we present the algorithm for constructing a
NF from a PROPER generator for input of the same type.



Algorithm 1: Top-level NF construction algorithm.

1 construct_nf(g):
2 begin
3 type ← get_type(g);
4 nfraw ← n(b, t) for type according to Tables I and II;
5 nf ← apply_constraints(nfraw , g);
6 return nf ;
7 end

The basic idea of the algorithm is to reenact the decisions
made by the generator while generating an input value. Instead
of deciding which value a variable should hold randomly, we
choose values in the neighborhood of the previously generated
value, called the base value, of that variable. By doing so
for all random variables of the generator, we assume that the
resulting value will be in the neighborhood of the base one.

PROPER comes with a set of built-in generators with which
all generators including user-defined ones are built. During
construction, we traverse the generator definitions and build
a NF where the random decisions of these built-in generators
are replaced by general NFs for the respective generator type.

If a custom generator has constraints (as defined by ?SUCHTHAT)
then these are checked after a neighboring candidate has been
produced. If all constraints are fulfilled then the candidate
is returned as new input. Otherwise, the constructed NF is
used to produce another neighboring input from the base value.
If a valid neighboring solution cannot be produced within a
certain number of attempts, a random element is generated
from the originating random generator instead. The top-level
construction algorithm is given in Algorithm 1.

For most built-in generators and combinations thereof a NF
can be constructed statically for the whole generator at once.
This is often not possible for more complicated user-defined
generators (e.g., generators that use ?LET) since values that are
instantiated early in the generation process might influence the
structure of the generators dynamically.

In Table I, we list the translation rules for most of PROPER’s
built-in “basic” generators; some additional rules appear
in Table II. The constructed NF is written as n(b, t) where b
is the base input and t the current temperature. We define a
NF that is obtained from a generator g as construct_nf(g). We
use the notation v ∼ U(Set) to uniformly sample a value v
from Set and x ∼ g to sample a value x from generator g.

As an example, we define the neighborhood of numeric
values as an interval that is 10% the size of the total sample
space around the base value. For structural types, the algorithm
decides for each sub-structure if it stays unchanged or if it will
be modified. For lists that can change their length, elements
can additionally be deleted or inserted. If an element is chosen
to be modified, then it is exchanged to one in the neighborhood
of the current element, depending on the element’s generator.

The so constructed NF scales the size of the neighborhood
from which the next element gets selected by the temperature.
This means that under low temperature the neighborhood is
smaller than under high temperature. The idea is that in the

TABLE I
ALGORITHMS FOR CONSTRUCTING NFS FOR THE MAIN TYPES.

n(b,t) for atom() — the algorithm for binary() is similar

1 gchars ← list(integer(0, 255));
2 nfchars ← construct_nf (gchars );
3 nextchars ← nfchars (atom_to_list(b), t);
4 return list_to_atom(nextchars);

n(b,t) for exactly(Value)

1 return Value;

n(b,t) for integer(l, h)

1 r ← (h− l) ∗ 0.05 ∗ t;
2 o ∼ U([−r, r]);
3 return max(l, min(bb+ oc, h));

n(b,t) for list(gelement )

1 growthCoeff ∼ U([0.1, 0.9]);
2 nfelement ← construct_nf (gelement );
3 foreach element e in b do
4 operation ∼ List.getOperation(growthCoeff , t);
5 switch operation do
6 case add do
7 v ∼ gelement;
8 insert v after e in b
9 case del do

10 delete e from b
11 case modify do
12 nexte ← nfelement (e, t);
13 exchange e with nexte in b
14 otherwise do
15 -
16 end
17 end
18 end
19 return updated b;

n(b,t) for tuple([g1, g2, . . .])

1 foreach element ei in b do
2 operation ∼ Tuple.getOperation(t);
3 switch operation do
4 case modify do
5 nfi = construct_nf(gi);
6 Pnextei ← nfi (ei, t);
7 exchange ei with nextei in b
8 otherwise do
9 -

10 end
11 end
12 end
13 return updated b;

n(b,t) for union([g1, g2, . . .])

1 operation ∼ getOperation(t);
2 switch operation do
3 case change do
4 g ∼ U([g1, g2, . . .]);
5 nextg ∼ g;
6 return nextg ;
7 case modify do
8 Gs ← all gi where b is an instance;
9 g ∼ U(Gs);

10 nfg ← construct_nf(g);
11 return nfg (b, t);
12 otherwise do
13 return b;
14 end
15 end



TABLE II
MORE ALGORITHMS FOR CONSTRUCTING NEIGHBORHOOD FUNCTIONS.

n(b,t) for float(l, h)

1 r ← (h− l) ∗ 0.05 ∗ t;
2 o ∼ U([−r, r]);
3 return max(l, min(b+ o, h));

n(b,t) for fixed_list([t1, t2, . . .]) — see tuple([t1, t2, . . .])

n(b,t) for vector(n, element_type)

— similar to list(element_type) but without add and del cases

n(b,t) for ?USERNF(g, nfuser)

1 retval ← nfuser (b, t);
2 return match(b, retval , t);

n(b,t) for g = ?LET(x, gin, fin)

1 nf ′ ← construct_nf(gin);
2 if ((prevx ← cache_lookup({g, b})) exists) then
3 nextx ← nf ′(prevx, t);
4 else
5 nextx ∼ gin;
6 end
7 next ← match(b, fin(nextx ), t);
8 cache_store(〈g, next〉, nextx);
9 return next;

beginning of the testing it is easier to explore larger parts of
the input space if the neighbors are further apart from each
other. In contrast, towards the end of the testing, smaller steps
can help narrowing down good input more efficiently [9].

Caching and Matching

User-defined generators that use a ?LET(x, gin, fin) construct
are comprised of an inner generator gin which produces a
random value for x, and a function fin that constructs the
value generated by the entire ?LET. Following the idea of the
construction algorithm, we construct a NF so that gin produces
a value in the neighborhood of the previous inner value and
then applies fin afterward. The last entry of Table II shows the
general NF our construction algorithm uses for ?LET generators.

In general, the fin function of a ?LET is not reversible. This
means that it is not possible to calculate the inner value that
was used to construct a specific value by using fin. This
inner base value is however needed to generate a value in
its neighborhood for the next generation round. Additionally,
a constructed generator can generate three different types of
results when evaluating fin: an immediate value, a generator,
or a mix of both.

We solve the first issue partially by caching the constructed
inner values. After each construction, we store that the
generator g produced the combined value v with the generated
inner value. We do this by using the pair 〈g, v〉 as key to cache
the inner value. During the next iteration we try to restore
this inner value. This time we use as key the generator and
the base value (which is the previous combined value). If a
cached inner value exists, we use it as the base value for the

Algorithm 2: Match the base value b against the intermediate
result m with temperature t.

1 match(b,m, t):
2 begin
3 switch m do
4 case m is just a generator do
5 nfm ← construct_nf (m);
6 b′ ← nfm(b, zero);
7 return nfm(b′, t);
8 case m and b are lists of same length do
9 foreach em and corresponding eb in m and b do

10 replace em with match(eb, em, t);
11 end
12 return updated m;
13 case m and b are tuples do

/* similar to the list case */
14 otherwise do
15 return ∼ m; /* return a sample from m */
16 end
17 end
18 end

internal generator. If no cached value is found, we generate a
new random element instead.

We approach the second issue by structurally matching the
prior value to the return value of the fin function: an immediate
value is not matched and used directly as new value of the
generator; if the return value is only a generator then it is
matched against the whole prior value; if the return value and
the prior value is a list then the list members are matched
against each other if the lengths of the lists are the same.
The same applies to tuples. If at some point the algorithm
cannot match a prior value against the newly constructed value
vnew anymore, then vnew is used as new value. The matching
algorithm is shown in Algorithm 2.

Matching allows us to construct neighborhood functions
for nested ?LET generators where the fin function uses other
generators. Without matching, the process would stop after
resolving the first ?LET construction and a new random value
would be generated at this point. This means that in such cases
only the values from the inner generator of the first ?LET would
be modified by the neighborhood function.

We will demonstrate how matching works in practice on a
variation of the graph(N) generator that generates graphs with a
variable number of vertices:

graph_duplicated_edges() ->
?LET(Vn, integer(2, 42),

begin
Vs = lists:seq(1, Vn),
{Vs, list(edge(Vs))}

end).

After generating a Vn value, this generator returns a tuple
containing the list of vertices and a basic generator for the list of
edges. During random PBT, PROPER would resolve this return
value by generating a fresh list of edges for every test. The
constructed NF retrieves the base value of Vn from the cache
and constructs a NF from the generator integer(2, 42). This
inner NF is used to produce the next Vn in the neighborhood of



the cached previous Vn. The fin function then returns a tuple
containing a list of vertices as immediate value and a generator
for the list of edges. The constructed NF then matches the
previous list of edges to the generator for the new list of
edges. list(edge(Vs)) is a basic generator and the neighborhood
relation can be resolved with the matched previous value.
Matching tries to optimistically match the base value against
the intermediate values of the generation. Because of this, some
base values may be matched that are not valid anymore. In our
graph_duplicate_edges() generator, it can for example happen
that some of the edges in the base value for the list of edges
are not valid edges anymore because the set of vertices got
smaller. Therefore it is necessary to check that the elements
of the list are valid according to their generator.

To preserve the integrity in such cases, we replace during
matching each list element with a neighbor that is constructed
with a special zero temperature. At zero temperature, the NF
does not alter the base value if it is a valid input value. If the
input value is not valid, a new random input value is generated.
The advantage of using the constructed NF is that the base
value is traversed in the same way as if every element would
be modified. Only the part of the base value that is invalid is
constructed again. In our example, this results in more similar
list elements than if we would only check whether whole
elements are valid input and generate new elements if not.

Matching and caching do not always work and it is important
to write more involved generators with the limitations of the
approaches in mind. Our graph_duplicated_edges() generator does
not filter duplicates from the list of edges. The following
generator adds such filtering but also prevents that matching
and caching work appropriately:
graph_no_caching() ->
?LET(Vn, integer(2, 42),

begin
Vs = lists:seq(1, Vn),
?LET(Es, list(simple_edge(Vs)), {Vs, lists:usort(Es)})

end).

For this generator, the constructed NF will generate a Vn

that is in the neighborhood of the previous one. The list of
edges will be generated randomly for each generated input
value because matching and caching does not work properly
in this case. This happens because: (1) The first ?LET returns
the inner ?LET generator (the second ?LET) which is matched
with the whole base value. In the next step, the second ?LET

generates an immediate value which requires no matching since
the generation process is finished at this point. (2) Since Vn

differs in each generation, the second ?LET is parameterized
differently and effectively constitutes a new generator. This
means that this part of the neighborhood function is constructed
anew for each run and we cannot retrieve the base value for
the list of edges, meaning that the only possible action left
is to generate a new list of edges. It is however possible to
modify the graph_no_caching() generator so that it contains no
duplicate edges. By reversing the order of the ?LET constructs
as follows matching and caching work again:
graph() ->
?LET({Vs, Es}, graph_duplicated_edges(), {Vs, lists:usort(Es)}).

In this example, caching works since both generators are
static and do not depend on values that are generated, and
matching works as in the graph_duplicated_edges() example.
Matching requires that the base value and the intermediate
are structurally compatible. If the structure of the values that
require matching is depending on values that are generated
earlier then the matching might not work correctly like in the
following example:

graph_no_matching() ->
?LET({Vs, Es}, graph_duplicated_edges2(), {Vs, lists:usort(Es)}).

graph_duplicated_edges2() ->
?LET({Vn, En}, {integer(2, 42), integer(0, inf)},

begin
Vs = lists:seq(1, Vn),
{Vs, edges(Vs, En)}

end).

edges(_V, 0) -> [];
edges(V, N) -> [edge(V)|edges(V, N-1)].

The list of edges is now generated as a list of generators,
one for each edge. The length of this list is still in the
neighborhood of the previous list but, since the length can
change, the matching can no longer match the previous list of
edges to the list of generators since only lists of equal length are
matched. The three generators graph(), graph_no_caching(), and
graph_no_matching() define the same type of input with a similar
distribution of values. The construction algorithm however
produces neiborhood functions with quite different quality.

The restrictions of the NF constructor are also stemming
from the assumptions of the algorithm. We assume that if we
slightly change the decisions for the values we make during
generation we end up with some input value that is similar to
the previous value. The set of value decisions in user-defined
generators can either be static or dynamic, depending on early
decisions. In the later case, this means that we cannot match
completely the previously generated value to the available
decisions because their type can differ from the ones that were
made earlier.

V. EVALUATION

The quality of the neighborhood function is a key factor for
the effectiveness of the simulated annealing search strategy.
Therefore, in this section, we compare how the hand-written
and tuned NFs of our previous work in the TPBT paper [3]
perform against automatically constructed ones with respect
to testing effectiveness and performance. Furthermore, we try
to quantify the trade-offs between ease of use and testing
performance in a small user study.

A. Energy Efficiency of MAC Protocols

The first case study concerns testing a property about the
energy efficiency of network configurations using different
implementations of MAC protocols [10]. The setup of the test
experiment [3] generates sensor networks consisting of UDP
server and client nodes where the client nodes periodically
send messages to the server node. The experiment then records
the duty cycle for each node and checks that no node has a
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Fig. 3. The y-axis shows a metric of the energy consumption over tests (x-axis). The graph shows the minimum, median, and maximum of random PBT
(orange, dots) in comparison to targeted PBT with a hand-written (green, lines) and a generated NF (blue, solid) of the achieved minimums (left graph) and
maximums (right graph) of 100 runs with 10, 000 tests.

duty cycle above 25%. (A more detailed description of the
setup is given in [3].)

The input to the targeted property is a network topology with
a variable number of sensor nodes and links between them.
The hand-written NF alters in each step the nodes and links
of the topology (scaled by the temperature) and is tuned to
work well with the tested property. With this hand-written NF
the time to find a counterexample is on average 2h12m (down
from 7h46m using random PBT). However, the hand-written
NF requires around 100 lines of complex code.

We exchanged the hand-written NF with an automatically
constructed one using the graph() generator from Section IV
and tested the otherwise unchanged property. On average the
property failed after 2h19m, which is very similar to the time
achieved by the hand-written neighborhood function, showing
that the automatic construction of NFs is quite good in this
case.

B. Routing Trees for Directional Antennas

The second case study [3] showed that TPBT can guide the
input generation for complex data structures like routing trees
for directional antennas towards configurations with a high or
low estimated energy consumption. The routing trees for this
type of antennas are special in the sense that, besides needing
to generate links that connect nodes of the network, we also
need to generate sending and receiving directions for each link.

The experimental setup [3] used a recursive random generator
and a complicated hand-written NF. This random generator
produces a random tree with directions, recursively choosing
one link at a time. The NF alters the tree by moving subtrees to
different parents. Because of the limitations of our construction
algorithm, it is hard to obtain good performance when using
this recursive generator as the basis for an automatically
constructed NF.

We therefore implemented a different random generator
based on random minimum spanning trees [11]. This generator
produces random sending directions and a random weight for
each possible link. A spanning tree with minimum weights
is then deterministically calculated from these weights. We
implemented a hand-written NF that switches the weights on a
subset of all possible links. This alters the order in which the
links get chosen when building the minimum spanning tree.
After changing the weights, the hand-written NF generates new
sending and receiving directions for some of the links.

In Fig. 3 we plot the achieved minimum, median, and maxi-
mum of the estimated energy consumption when instructing the
search strategy to optimize it in either direction. The two graphs
show the median line and the range for all runs illustrating the
worst case and the best case. We also show how random PBT
performs compared to targeted PBT.

Targeted PBT outperforms random PBT with either NF. After
less than 1, 000 tests, the worst case run of TPBT produces
inputs with a higher estimated energy consumption than the best
case of random PBT when instructed to maximize the measure
(right graph). The constructed NF performs even slightly better
than the hand-written one. When minimizing (left graph), both
neighborhood functions have very similar performance.

This experiment shows that the automatically constructed
neighborhood functions work very well when they are based
on the right generators. The random generator that we use as
input to the construction is important for the quality of the
resulting NF and the testing performance. We were not able to
use the original recursive generator and had to come up with
one that generates routing trees in a non-recursive way. While
it took some work to implement a new generator that is better
suited for our construction algorithm, the effort of writing a
NF by hand is much bigger. The new non-recursive generator
is only 10 lines, while the corresponding hand-written NF
requires around 40 lines of code.



TABLE III
AVERAGE TIMES (IN MSECS) TO FIND A COUNTEREXAMPLE FOR BUGS

INJECTED TO THE STACK MACHINE OF HRIŢCU et al. [12].

PBT Targeted PBT

Random Handwritten Constructed

ADD 5800.57 274.68 489.93
PUSH 338.90 3.72 2.74
LOAD 7764.15 341.30 447.25
STORE A 16997.81 2634.80 3685.32
STORE B 341.02 5.51 3.84
STORE C 336.45 4.60 3.29

MTTF (arithmetic) 5263.15 544.10 772.06
MTTF (geometric) 1760.45 53.44 55.10
Average tests per second 9479 7431 2595

C. Noninterference

Hriţcu et al. [12] explored how random PBT can be em-
ployed to quickly test formal specifications for mistakes and
help in the design of secure information-flow control (IFC)
abstract machines. The third case study of the TPBT paper [3]
showed that targeted PBT can be used to efficiently test these
properties by guiding the generation towards long-running
programs. Long-running programs discover more interesting
states in the abstract machines and have a higher chance of
unveiling errors in their definitions. Here, we want to evaluate
how well a constructed NF performs in finding the injected
bugs of the IFC machine and compare its effectiveness against
the hand-written NF and random PBT.

Our baseline for random PBT is the SEQUENCE genera-
tor [12]. This generator produces a random list of instructions
that get chosen with a weighted distribution; e.g., it is more
likely that a push instruction gets generated than an add or a
noop. Additionally, sequences of instructions that make sense
together (e.g., a push followed by a load) are produced.

The hand-written NF produces a new list of instructions
by removing some old instructions from the previous list and
adding some new ones. Existing instructions are not modified,
as we found out that these alterations do not lead to longer
sequences of executed instruction fast enough.

In Table III we list the average times it took for each
technique to find each of the six injected bugs. As expected
from our previous experiment [3], random generation of the
programs is slowest in finding counterexamples. TPBT with
the hand-written NF performs best in this experiment. However,
the automatically constructed NF is quite competitive to it and
achieves acceptable performance in all cases.

It should be noted that Hriţcu et al. [12] also present a
more sophisticated BYEXEC generation strategy in which the
instruction list is generated one instruction at a time such that
the newly added instruction may not crash the IFC machine.
This strategy, both when using random and targeted PBT, finds
all injected bugs faster [3]. However, it also requires more
effort to implement than the generator we use here.
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Fig. 4. The graph plots, for each neighborhood function (labeled A–L), the
times (in seconds) required to find a counterexample for the property (dots) and
their distribution (boxes), repeating the experiment 500 times. The numbers
below the labels are the lines of code for each hand-written implementation.
The rightmost entry (Gen) corresponds to the generated neighborhood function.

D. Small User Study

The automated construction of the neighborhood function
reduces the manual work required from the user and thus makes
targeted PBT more accessible and easier to use. Still, this comes
with a possible downgrade in testing performance since the
quality of the NF is a critical component of the search strategy.
To study the reduction in programming effort and its effects
on performance, we conducted a small user study with a group
of M.Sc. students from an advanced functional programming
course at Uppsala University in the fall of 2017. The students
were asked to implement NFs for testing a targeted property.
We then analyzed the techniques that the NFs used to generate
a neighbor and their overall testing performance. Before taking
part in this study, all students were familiar with the concepts
of random and targeted PBT. (A previous assignment contained
exercises on random PBT.)

The property that we provided the students with tested
the spell system component of an imaginary role-playing
game for an exploit that would grant the player too much
power and is therefore considered a bug. We also supplied the
implementation of the spell system and the targeted property.
The students were then asked to implement a NF by hand so
that the property fails consistently and were given ten days
for handing in their submissions to this and the rest of the
assignment. For reference, we have put the complete description
of the assignment and the associated source code online [13].

We received twelve solutions for this task. It is noteworthy
that every student who submitted a NF as solution solved the
problem and was able to find a combination of spells that
falsified the given property.

To evaluate the performance of the hand-written NF com-
pared to the constructed NF we tested the property 500
times with each NF and recorded the times required to find
a counterexample. Figure 4 plots these times for each NF



TABLE IV
STRATEGIES USED BY THE PARTICIPANTS OF THE USER STUDY FOR

IMPLEMENTING THE NEIGHBORHOOD FUNCTION.

Strategy Description

random expansion add new spells at random locations
random reduction remove spells from random locations
strategic expansion add new spells at “well-chosen” locations
strategic reduction remove spells from “well-chosen” locations
shuffling change the order of the spells
modification in-place alter spells in-place
restart discard the current input and generate a new

random input
spell selection select in a more sophisticated way the spells

that are added, removed or modified

combined with their distribution. A well-implemented NF that
is tuned to the problem can achieve a testing performance that is
one to two orders of magnitude better than the constructed NF.
This difference in performance is expected. The constructed
NF is designed to be applicable regardless of the property that
is tested. By writing the NF by hand, one can make much
stronger assumptions about the solution space, which can then
be exploited in the NF. For example, the fastest solving NF (L)
contains a set of configuration parameters that were fine-tuned
to fit the given problem. Even though most hand-written NFs
are faster than the constructed one, we can observe that some
hand-written NFs have similar or worse performance, and that
the variance of the hand-written NFs is much higher than the
one for the constructed NF. This shows that implementing a
neigborhood function is not always straightforward and can
pose an obstacle to using targeted PBT.

The number of lines of code required for the implementation
of the neighborhood functions ranged from 7 to 57. To further
analyze their complexity, we identified a total of eight classes of
neighbor selection strategies that were used to generate the next
neighbor. The names of these strategies and a short description
of them appears in Table IV. In all student submissions,
multiple strategies were combined. We could identify that
at least random expansion or random reduction strategies
were necessary to achieve good results in terms of testing
performance. Additionally, we observed that the intensity of
the modifications done to generate a neighbor affected the
overall performance. Finally, many NFs tuned the number of
reductions, expansions, and alterations made to the base value
in each generation step.

In a nutshell, this small user study shows that hand-written
and fine-tuned implementations of neighborhood functions that
are fitted to the property outperform automatically constructed
ones. But it also indicates that it is not always straightforward to
do so. Implementing a good neighborhood function can require
considerable effort. In contrast, a constructed NF provides a
baseline that is available immediately and can be adjusted
further if needed.

VI. RELATED WORK

Our work builds upon the paper that introduced targeted
property-based testing [3]. Our implementation is on top of

the open-source QuickCheck-inspired testing tool PROPER [4].
The component that automatically constructs neighborhood
functions from generators is already integrated in the tool.

The QuickCheck library for Haskell by Claessen and
Hughes [2] pioneered the idea of using a high-level language
for writing properties and generators for property-based testing.
Property-based testing has since been applied to a variety of
applicationareas [10], [14], [15].

The idea of using search-based techniques for software
testing was put forward by Miller and Spooner [16] in 1976.
Since then, it has been applied to various testing areas; cf.
some survey articles on the subject [17]–[19]. In particular, we
mention two testing tools (EvoSuite [20] and Randoop [21])
that use such techniques, and two interesting recent uses [22],
[23] of search-based testing.

Languages for test data generation that provide alternative
ways of defining random generators (e.g., through predicates
as in Luck [24] or with non-deterministic choices as in
UDITA [25])) also exist.

The idea to construct a function or a program from a
high-level specification is of course not new, and the field
of program synthesis has been an active area of research since
the 1970s [26] and even more so recently. It applies techniques
from constraint programming, machine learning, and stochastic
search. The interested reader is referred to the recent article
by Gulwani et al. [27] for an overview of the field. However,
to the best of our knowledge, our work is the first one that
constructs a neighborhood function for simulated annealing
from a random generator or another high-level description of
the input/solution space.

VII. CONCLUDING REMARKS

We presented a technique for targeted property-based testing
based on simulated annealing that constructs a neighborhood
function automatically from a random generator of inputs. We
demonstrated that, by doing so, the effort of using targeted
PBT is reduced significantly making it almost as easy as its
random counterpart. We furthermore showed that the efficiency
of simulated annealing with these neighborhood functions is
most of the time sufficient and in some cases competitive to
hand-written ones.

As future work, it would be interesting to conduct larger
case studies from real applications, and also investigate how
ingredients that search strategies for targeted PBT other than
simulated annealing can also be generated automatically.
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