
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Αυτόματος Τυαίος Έεος Συστημάτν με
Εστερική Κατάσταση άσει Μοντέου

Διπματική Ερασία
της

Ειρήνης Αρανίτη

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εραστήριο Τενοοίας Λοισμικού
Αήνα, Ιούιος 2011

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Τενοοίας Λοισμικού

Αυτόματος Τυαίος Έεος Συστημάτν με
Εστερική Κατάσταση άσει Μοντέου

Διπματική Ερασία
της

Ειρήνης Αρανίτη

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 18η Ιουίου, 2011.

........................
Κστής Σαώνας Νικόαος Παπασπύρου Κώστας Κοντοιάννης

Αν. Καηητής Ε.Μ.Π. Επικ. Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Μ.Π.

Αήνα, Ιούιος 2011

...
Ειρήνη Αρανίτη
Διπματούος Ηεκτροόος Μηανικός και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright © – All rights reserved Ειρήνη Αρανίτη, 2011.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού
Μετσόιου Πουτενείου.

Περίηψη

To PropEr είναι ένα εραείο ανοιτού οισμικού ια τον αυτόματο τυαίο έεο ιδιοτήτν
συναρτήσεν, ραμμένν στη ώσσα Erlang, από τις προδιαραφές τους. Αρικά ήταν
επικεντρμένο στον έεο ανών συναρτήσεν. Ωστόσο, οι εφαρμοές που υοποιούνται
σε Erlang συνής αποτεούνται από κώδικα με εστερική κατάσταση. Στην παρούσα
διπματική ερασία, έουμε επεκτείνει το PropEr με δύο ιιοήκες που υποστηρίζουν τον
τυαίο εέο συστημάτν με εστερική κατάσταση άσει μοντέου. Ο ρήστης καείται να
προσδιορίσει ένα μοντέο της συμπεριφοράς του συστήματος υπό έεο. Δεδομένου αυτού
του μοντέου, εέουμε ένα σύστημα παράοντας και εκτεώντας ακοουίες κήσεν
προς αυτό, ενώ καταράφουμε τις αποκρίσεις του ώστε να επιεαιώσουμε ότι το σύστημα
παρουσιάζει την αναμενόμενη συμπεριφορά.

Η πρώτη ιιοήκη, που ονομάζεται proper_statem, έει σεδιαστεί ια τον έεο ενικευ-
μένν εξυπηρετητών και άν συστημάτν τν οποίν η διεπαφή παρουσιάζει εστερική
κατάσταση. Οι παρενέρειες τν συστημάτν προσδιορίζονται μέσ μίας αφηρημένης μηανής
κατάστασης. Η ίδια μηανή κατάστασης μπορεί επίσης να ρησιμοποιηεί ια την παραή
ακοουιών κήσεν, οι οποίες α εκτεεστούν παράηα ια τον εντοπισμό συνηκών
αντανισμού. Η δεύτερη ιιοήκη, που ονομάζεται proper_fsm, προσφέρεται ια τον
έεο συστημάτν που παρουσιάζουν συμπεριφορά μηανής πεπερασμένης κατάστασης,
αφού είναι σεδιασμένη ώστε να φέρνει την περιραφή του μοντέου του συστήματος πού
κοντά σε ένα διάραμμα κατάστασης. Ο προσδιορισμός ενός μοντέου ια το σύστημα υπό
έεο δεν είναι σε καμία περίπτση τετριμμένη διαδικασία. Γι’αυτό το όο, παρουσιάζουμε
επτομερή επεξηηματικά παραδείματα σετικά με την αποτεεσματική ρήση τν νέν
ιιοηκών ια τον έεο συστημάτν με εστερική κατάσταση.

Λέξεις Κειδιά

έεος οισμικού άσει μοντέου, έεος οισμικού άσει ιδιοτήτν, αυτόματος έεος,
τυαίος έεος, παράηος έεος, προδιαραφές μηανής κατάστασης

5

Abstract

PropEr is an open-source tool for automated random testing of Erlang function properties
from specifications. Its original focus was on testing pure functions. Nevertheless, projects
implemented in Erlang typically consist of stateful code. In this thesis, we have extended
PropEr with two library modules that support random model-based testing of stateful
reactive systems. The model behaviour of the system under test should be defined in a
callback module. Given this model, we test a stateful system by generating and performing
sequences of calls to that system, while monitoring its actual responses to ensure the system
behaves as expected.

The first module, proper_statem, is designed to test generic servers and other systems
with stateful interfaces, whose side-effects are specified via an abstract state machine. The
same state machine specification can also be used for generating sequences of calls that
will be executed in parallel to test for race conditions. The second module, proper_fsm,
offers a convenient way to test systems exhibiting a finite state machine behaviour, as it is
designed to bring the callback module specification very close to a state diagram. Defining
a model of the system under test is by no means a trivial task. To compensate for that,
we present detailed tutorials on effectively using the new library modules to test stateful
systems.

Keywords

model-based testing, property-based testing, automated testing, random testing, parallel
testing, state machine specifications

7

Ευαριστίες

Θα ήεα να ευαριστήσ τον επιέποντα καηητή μου, Κστή Σαώνα, ια την έμπνευση
του έματος της διπματικής, τη διαρκή καοδήηση και τη συνερασία μας κατά τη διάρκεια
του τεευταίου έτους. Επιπέον, ια την εμπιστοσύνη που μου έδειξε από την πρώτη στιμή
ανάεσης της διπματικής.

Θα ήεα επίσης να ευαριστήσ το Μανώη Παπαδάκη, ια τις πούτιμες συμουές του,
το ρόνο που διέεσε και την προυμία του να απαντήσει σε κάε είδους απορία σετικά με
το PropEr.

Ευαριστώ τους καηητές και τους φοιτητές του Εραστηρίου Λοισμικού ια τις εποικο-
δομητικές συζητήσεις και τη φιική ατμόσφαιρα στο εραστήριο. Ιδιαιτέρς τον κ. Νίκο
Παπασπύρου, ο οποίος συνέαε στην απόφασή μου να ασοηώ με την Πηροφορική από
το πρώτο έτος τν σπουδών μου.

Τέος, ευαριστώ την οικοένειά μου και όσους ήταν τα τεευταία ρόνια δίπα μου στηρίζο-
ντας κάε μου επιοή.

Ειρήνη Αρανίτη

9

Contents

Περίηψη 5

Abstract 7

Ευαριστίες 9

Contents 12

List of Figures 13

List of Listings 16

1 Motivation 17

2 A Short Introduction to Erlang and OTP 19
2.1 The Erlang Programming Language . 19
2.2 OTP Design Principles . 20
2.3 Behaviours . 20

2.3.1 A generic server behaviour . 21
2.3.2 A generic finite state machine behaviour 23

3 Property-Based Testing, Model-Based Testing and PropEr 29
3.1 An overview of property-based testing with PropEr 29

3.1.1 Properties . 29
3.1.2 Types and generators . 31
3.1.3 Symbolic representation . 32

3.2 Using PropEr to test stateful systems: the idea 32
3.2.1 Model-Based Testing . 33
3.2.2 Our approach to testing stateful systems 34

4 Testing Stateful Systems 35
4.1 PropEr Statem . 35

4.1.1 General concepts . 35
4.1.2 Defining a callback module . 37
4.1.3 Implementation details . 38
4.1.4 Parallel statem testing . 42

4.2 PropEr FSM . 47
4.2.1 Changes in the callback module . 48
4.2.2 Implementation details . 50
4.2.3 API description and implementation 52

11

12 Contents

5 Some PropEr Tutorials 55
5.1 PropEr statem tutorial . 55

5.1.1 The ping-pong players . 55
5.1.2 It’s ping-pong time! . 56

5.2 PropEr FSM tutorial . 61
5.2.1 Defining the PropEr finite state machine 61
5.2.2 PropEr in action . 64

6 Conclusion 69
6.1 Concluding remarks . 69
6.2 Future work . 69

Bibliography 71

List of Figures

2.1 State Diagram of creature’s behaviour . 24

4.1 PropEr statem workflow . 41

13

List of Listings

2.1 Starting the ping-pong master . 21
2.2 Calls to the ping-pong master . 22
2.3 Stopping the ping-pong master . 23
2.4 State data representation . 24
2.5 Starting the fsm . 25
2.6 Example of synchronous event handling . 25
2.7 Example of asynchronous event handling . 26
2.8 Another example of asynchronous event handling 26
2.9 Stopping the finite state machine . 27
3.1 Example of a property . 30
4.1 Example of a command sequence . 36
4.2 Recursive command generator . 39
4.3 Commands/1 implementation . 39
4.4 Property to test stateful systems . 41
4.5 Parallel test case generator . 43
4.6 Producing command interleavings . 44
4.7 Main shrinker for parallel test cases . 45
4.8 Additional shrinker for parallel test cases 45
4.9 Attempt to construct a sequentialization of the results observed 46
4.10 Property for parallel testing . 47
4.11 Specifying transitions for the FSM of a tv 49
4.12 Initializing the model state . 50
4.13 Choosing the next symbolic call . 51
4.14 precondition/2 callback . 51
4.15 postcondition/3 callback . 52
4.16 next_state/3 callback . 52
4.17 Implementation of proper_fsm command generators 53
4.18 Implementation of proper_fsm:run_commands/2,3 53
4.19 Property for testing finite state machines 54
5.1 Ping-pong player’s loop . 55
5.2 Ping-pong player’s API . 56
5.3 Model state representation . 57
5.4 The operations to be tested . 57
5.5 State transitions . 57
5.6 Preconditions . 57
5.7 Postconditions . 58
5.8 Property with pretty-printing functions . 58
5.9 Testing the property . 59
5.10 Fixing the postcondition . 59

15

16 List of Listings

5.11 Clean-up code upon termination . 60
5.12 Handling ping messages . 60
5.13 Fixing the bug . 60
5.14 Test case distribution of 1000 successful tests 61
5.15 Property for the ‘creature’ finite state machine 61
5.16 Initializing the model state . 62
5.17 Callbacks for the states of the finite state machine 62
5.18 Store and eat transitions . 63
5.19 Preconditions and postconditions . 63
5.20 Updating the state data . 64
5.21 First attempt to test the property . 64
5.22 Selected transitions from a cheese_day . 64
5.23 Preconditions . 65
5.24 Collecting statistics on test case distribution 65
5.25 How often each transition is tested? . 66
5.26 Assigning weights to transitions . 66
5.27 Running the test with weighted transitions 66
5.28 Correcting our code . 67
5.29 Additional precondition . 67
5.30 Introducing conditional transitions . 68
5.31 Test case distribution of 1000 successful tests 68

Chapter 1

Motivation

Test-Driven Development (TDD), a practice suggesting that tests should be the driving
force in software creation [4], is very popular within the Erlang community. Testing is
used in all phases of software development to reveal software discrepancies, or increase
confidence about their absence. TDD calls for automating the test process as much as
possible, in an attempt to produce concise and reusable test suites that can accomplish
a thorough testing of the system under test. Unit testing frameworks (e.g. EUnit1 for
Erlang) are commonly used towards this direction, since they can automatically execute
large test suites and capture related output. Nevertheless, it is the user’s manual task to
provide valid test input and decide on the correctness of the output.

In the recent years, there has been a growing interest in Property-Based Testing (PBT).
This is a novel approach to software testing, where the test process is driven by properties,
which depict the system’s intended behaviour, and generators, which produce directed
random test input data. The tester only needs to specify the appropriate generators, along
with a number of properties which are expected to hold for every valid input produced by
the generators. A property-based testing tool, when supplied with this information, will
automatically produce progressively more complex random valid inputs, then apply those
inputs to the program while monitoring its execution, to ensure that it behaves according
to its specification.

The first implementation of a property-based testing tool was Quickcheck [7], written for
Haskell in 2000. Since then, the idea of property-based testing has spread into many pro-
gramming languages.2 The first PBT tool for Erlang is Quviq Quickcheck [3], a proprietary
closed-source tool, marketed as a commercial product. More recent PBT tools include Triq
[16] and PropEr [13, 14], which are released as open-source. PropEr’s exclusive feature,
compared to existing similar tools for Erlang, is that it offers a tight integration of the
language of types and function specifications of Erlang3 with properties.

Erlang is a programming language mainly used for developing telecom software, web ser-
vices or database management systems. Such applications typically consist of reactive
systems, i.e. systems that continuously interact with their environment through events.
This ongoing interaction with the environment forms the internal state of the system.
The internal state is based on previous operations and affects subsequent ones, therefore

1http://erlang.org/doc/apps/eunit/users_guide.html
2http://en.wikipedia.org/wiki/QuickCheck
3http://www.erlang.org/doc/reference_manual/typespec.html

17

http://erlang.org/doc/apps/eunit/users_guide.html
http://en.wikipedia.org/wiki/QuickCheck
http://www.erlang.org/doc/reference_manual/typespec.html

18 Chapter 1. Motivation

introducing side-effects in the system’s behaviour. Since PropEr’s initial focus was on
testing pure functions, it could not be easily used for testing code with side-effects. In
order to test a stateful system, users would have to provide generators that manipulate
the system’s internal state. This is a non-trivial task that requires considerable effort. For
this reason, we decided to equip PropEr with additional library modules so as to facilitate
testing of stateful systems.

The ideas that we have implemented come from the area of Model-Based Testing (MBT),
where a system is tested against an abstract model of itself. These ideas are already
implemented in Quviq Quickcheck [11]. Having no access to the commercial software or
its code, we have implemented from scratch a ‘stateful testing’ subsystem for PropEr,
which can serve as a basis for further research into the areas of property-based and model-
based testing. Last but not least, we have integrated PropEr’s exclusive features into the
new ‘stateful testing’ subsystem.

The rest of the thesis is organised as follows. Chapter 2 is a short introduction to the
Erlang programming language and OTP behaviours. In Chapter 3 we give an overview of
property-based testing with PropEr. Chapter 4 is the main chapter of the thesis, where
we present our implementation of a ‘stateful testing’ subsystem for PropEr. In Chapter 5
there are examples on effectively using PropEr to test impure code, in the form of tutorials.
Finally, in Chapter 6 we present our concluding remarks and future work.

Chapter 2

A Short Introduction to Erlang
and OTP

2.1 The Erlang Programming Language

Erlang is a high-level, general-purpose programming language and runtime system with
built-in support for concurrency, distribution and fault-tolerance [2, 6]. Its sequential sub-
set is a strict, dynamically-typed functional programming language. Originally developed
in the mid-1980s in Ericsson’s research laboratories, Erlang was designed with a clear goal
in mind: to support and facilitate the development of scalable, robust, massively con-
current, soft real-time, non-stop applications, such as telecommunication systems. As it
happens that web services, commercial banking, messaging systems, and database man-
agement systems, among others, share the same requirements as telecom software, Erlang
is becoming increasingly popular in these sectors as well. Since its open-source release
in December 1998, Erlang has been used in several proprietary and open-source projects,
including Apache CouchDB1, Amazon SimpleDB2, the distributed database Riak3, the
XMPP instant messaging server Ejabberd4, the AMQP messaging protocol implementa-
tion RabbitMQ5, and Yaws web server.6

Erlang’s main strength lies in its lightweight, no memory-sharing concurrency model.
Erlang processes are lightweight in that the Erlang VM does not create a new OS thread
for every newly-spawned process. Processes are created, scheduled and handled in the
VM, independently of the underlying operating system. Erlang implements the Actor
Concurrency Model, where processes do not share memory, instead each process executes
in its own memory space and owns its own heap and stack. Processes communicate with
each other via asynchronous message passing instead of shared variables, which removes
the need for locks. Incoming messages are retrieved from the process mailbox selectively
via pattern matching.

1http://couchdb.apache.org/
2http://aws.amazon.com/simpledb/
3http://www.basho.com/products_riak_overview.php
4http://www.ejabberd.im/
5http://www.rabbitmq.com/
6http://yaws.hyber.org/

19

http://couchdb.apache.org/
http://aws.amazon.com/simpledb/
http://www.basho.com/products_riak_overview.php
http://www.ejabberd.im/
http://www.rabbitmq.com/
http://yaws.hyber.org/

20 Chapter 2. A Short Introduction to Erlang and OTP

The Open Telecom Platform (OTP)7 provides a framework to structure Erlang systems
offering robustness and fault-tolerance together with a set of tools and libraries. In the
next sections, we present in more detail the design patterns that can be followed when
building software with Erlang/OTP.

2.2 OTP Design Principles

The OTP Design Principles is a set of principles for how to structure Erlang code in
terms of processes, modules and directories. In OTP systems are built in the following
hierarchical manner [1]:

Releases
Releases are at the top of the hierarchy. A release contains all the information
necessary to build and run a system. Internally a release consists of zero or more
applications.

Applications
Applications are simpler than releases, they contain all the code and operating pro-
cedures necessary to implement some specific functionality. The simplest kind of
application does not have any processes, but consists of a collection of functional
modules. Such an application is called a library application. An application with
processes is usually implemented as a supervision tree, that is a process structuring
model based on the idea of workers and supervisors.

Supervisors
OTP applications are commonly built from a number of instances of supervisors.
Supervisors are processes which monitor the behaviour of workers. A supervisor can
restart a worker if something goes wrong.

Workers
OTP supervisors supervise worker nodes. Workers are processes which perform
computations, that is, they do the actual work.

2.3 Behaviours

In a supervision tree, many of the processes have similar structures, they follow similar
programming patterns. Behaviours are formalizations of these common patterns. The idea
is to divide the code for a process in a generic part (a behaviour module) and a specific
part (a callback module). The behaviour module is part of Erlang/OTP. To implement a
process such as a supervisor, the user only has to implement the callback module which
should export a pre-defined set of functions (the callback functions) for the supervisor
behaviour.
Many worker processes are servers in a server-client relation, finite state machines, or event
handlers such as error loggers. These are implemented as instances of the gen_server,
gen_fsm and gen_event behaviours respectively. In the next sections, we will present in
more detail the gen_server and gen_fsm behaviours.

7http://www.erlang.org/doc/

http://www.erlang.org/doc/

2.3 Behaviours 21

2.3.1 A generic server behaviour

The client-server model is characterized by a central server and an arbitrary number of
clients and is generally used for resource management operations, where several different
clients want to share a common resource. The server is responsible for managing this
resource. gen_server is a behaviour module for implementing the server of a client-server
relation.

We will describe the gen_server’s and the callback module’s interfaces through an exam-
ple: a system consisting of one master and multiple slave processes. The master process
is implemented using the gen_server behaviour. The main concept is that the master
exchanges ping and pong messages with all slave processes, which do not interact with
each other. We can think of the slave processes as ping-pong players interacting only with
their trainer, i.e. the gen_server process. External clients should be able to attach and
detach player processes to and from the server. Additionaly, the server has to handle ping
messages and to keep track of the scores (i.e. the number of ping-pong message exchanges)
of the attached player processes.

We can start the server by calling gen_server:start_link({local, Name}, Mod, Ini-
tArgs, Opts). This function starts and links to a server localy registered as Name. An
option for globally registering the server is also available. Mod is the name of the callback
module. InitArgs is a term which is passed as is to the callback function Mod:init/1
and Opts is a list of additional options. Then, the first routine to be called in the callback
module is Mod:init(InitArgs), which must return {ok, State}. State is the internal
state of the gen_server process. In our case, it is a dictionary containing the scores of
attached player processes. This is specified in Listing 2.1.

� �
1 start_link() ->
2 gen_server:start_link({local, ?MASTER}, ?MASTER, [], []).
3
4 init([]) ->
5 {ok, dict:new()}.� �

Listing 2.1: Starting the ping-pong master

Listing 2.2 describes how to make synchronous requests to the server and also how such
requests are handled in the callback module. Synchronous requests are implemented using
gen_server:call(Name, Request). The request is made into a message and sent to
the gen_server registered as Name. When the request is received, the gen_server calls
handle_call(Request, From, State), where From is the PID of the requesting client
process and State is the current state of the gen_server. This is expected to return a
tuple {reply, Reply, NewState}. Reply is the reply which should be sent back to the
client and NewState is a new value for the state of the gen_server.

Asynchronous communication with the server can be achieved via
gen_server:cast(Name, Request), which implements a cast (i.e. an asynchronous
request). The request is made into a message and sent to the gen_server registered as
Name. When the request is received, the gen_server calls Mod:handle_cast(Request,
State), which is expected to return a tuple {noreply, NewState}.

We can use gen_server:cast/2 to stop the ping-pong server. To this end, we have to

22 Chapter 2. A Short Introduction to Erlang and OTP

� �
1 add_player(Name) ->
2 gen_server:call(?MASTER, {add_player, Name}).
3
4 remove_player(Name) ->
5 gen_server:call(?MASTER, {remove_player, Name}).
6
7 ping(FromName) ->
8 gen_server:call(?MASTER, {ping, FromName}).
9
10 get_score(Name) ->
11 gen_server:call(?MASTER, {get_score, Name}).
12
13 % --
14
15 handle_call({add_player, Name}, _From, Dict) ->
16 case whereis(Name) of
17 undefined ->
18 Pid = spawn(fun () -> ping_pong_player(Name) end),
19 true = register(Name, Pid),
20 {reply, ok, dict:store(Name, 0, Dict)};
21 Pid when is_pid(Pid) ->
22 {reply, ok, Dict}
23 end;
24 handle_call({remove_player, Name}, _From, Dict) ->
25 Pid = whereis(Name),
26 exit(Pid, kill),
27 {reply, {removed, Name}, dict:erase(Name, Dict)};
28 handle_call({ping, FromName}, _From, Dict) ->
29 {reply, pong, dict:update_counter(FromName, 1, Dict)};
30 handle_call({get_score, Name}, _From, Dict) ->
31 Score = dict:fetch(Name, Dict),
32 {reply, Score, Dict}.� �

Listing 2.2: Calls to the ping-pong master

2.3 Behaviours 23

define a callback clause Mod:handle_cast(stop, State) that returns {stop, normal,
NewState}. The second element (the atom normal) is used as the first argument to the
callback Mod:terminate(Reason, NewState), which is called upon termination in order
to give the server a chance to perform any final operations that it wishes to perform before
exiting. When Mod:terminate/2 returns, the generic server will be stopped and all name
registrations removed. Stopping the server is depicted in Listing 2.3.

� �
1 stop() ->
2 gen_server:cast(?MASTER, stop).
3
4 handle_cast(stop, Dict) ->
5 {stop, normal, Dict}.
6
7 terminate(_Reason, Dict) ->
8 Players = dict:fetch_keys(Dict),
9 lists:foreach(fun (Name) -> exit(whereis(Name), kill) end, Players).� �

Listing 2.3: Stopping the ping-pong master

For the gen_server to be able to receive other messages than pre-defined requests, the
callback function Mod:handle_info(Info, State) must be implemented to handle them.
Examples of other types of messages are exit messages and trapped exit signals. Last
but not least, the server can dynamically update its code while running via the callback
function Mod:code_change(OldVsn, State, NewVsn).

2.3.2 A generic finite state machine behaviour

A Finite State Machine (FSM) can be described as a set of relations of the form:

S ×E
A−→ S′

Meaning that if we are in state S and the event E occurs, we should perform the actions
A and make a transition to the state S′.

For an FSM implemented using the gen_fsm behaviour, the state transition rules are
written as a number of Erlang functions which conform to the following convention.

StateName(Event, StateData) ->
.. code for actions here ...
{next_state, NextStateName, NewStateData}

Concrete examples are given later in Listings 2.6–2.8.

The state is split into StateName and StateData. The StateName denotes a named state
of the finite state machine, whereas the StateData denotes the internal state of the process
implementing the gen_fsm.

Consider the state diagram in Figure 2.1. It describes the life of a strange creature that
feeds on cheese, grapes and lettuce but never eats the same kind of food on two consecutive
days.

24 Chapter 2. A Short Introduction to Erlang and OTP

Figure 2.1: State Diagram of creature’s behaviour

As we can see from the state diagram, days are categorized into cheese_days, lettuce_days
and grapes_days. On a cheese_day the creature eats only cheese, on a lettuce_day only
lettuce and so on. When it gets hungry, it consumes a fixed portion of the daily food,
which is kept in the food storage. To make life less boring and, more importantly, to bring
food to the storage, the creature goes shopping from time to time. Finally, every night it
decides what to eat the next day. There is only one rule regarding this decision: never eat
the same food for two days in a row.

Let us assume that this creature has implemented a finite state machine describing its
daily routine as a gen_fsm callback module. The internal state of the finite state machine
is a record that represents the food storage, as we can see in Listing 2.4. The record fields
contain the quantity of food that is currently stored.

� �
1 -type quantity() :: non_neg_integer().
2
3 -record(storage, {cheese = 5 :: quantity(),
4 lettuce = 5 :: quantity(),
5 grapes = 5 :: quantity()}).� �

Listing 2.4: State data representation

We can start and link to the finite state machine in a way similar to starting and linking to
the gen_server, using gen_fsm:start_link({local, Name}, Mod, InitArgs, Opts).
Then, the callback function Mod:init(InitArgs) will be called, which should now return
{ok, StateName, StateData}. StateName is the name of the initial state of the finite
state machine and StateData is the initial internal state of the gen_fsm. Starting the
gen_fsm is depicted in Listing 2.5. The input argument Day to start_link/1 specifies
the kind of day on which the finite state machine will be started. It can be a cheese_day,
lettuce_day or grapes_day.

2.3 Behaviours 25

� �
1 start_link(Day) ->
2 gen_fsm:start_link({local, creature}, ?MODULE, [Day], []).
3
4 init([Day]) ->
5 {ok, Day, #storage{}}.� �

Listing 2.5: Starting the fsm

The functions Mod:StateName(Event, StateData) and Mod:StateName(Event, Caller,
StateData) correspond to the states of the finite state machine. These states spec-
ify a context in which a given event is handled. Let us suppose that the initial call is
start_link(cheese_day). Then, the Mod:init/1 callback will return the tuple {ok,
cheese_day, #storage{}}. This means that the finite state machine will be initially in
a cheese_day state. Whenever the gen_fsm process receives an event, either the function
Mod:cheese_day/2 or Mod:cheese_day/3 will be called. Mod:cheese_day/2 is called
for asynchronous events, whereas Mod:cheese_day/3 for synchronous ones. The argu-
ments for Mod:StateName/2 are Event (i.e. the actual message sent as an event) and
the state data. Mod:StateName/3 takes the PID of the caller process as an extra argu-
ment. Both callbacks usually return a tuple of the form {next_state, NextStateName,
NewStateData}.

We can simulate the condition when the creature is hungry by sending a synchronous ‘eat’
event to the gen_fsm. Synchronous events to be handled by Mod:StateName/3 are sent to
a gen_fsm, registered as Name, with gen_fsm:sync_send_event(Name, Event). After the
event has been handled, a reply is sent back to the client using gen_fsm:reply(Caller,
Reply). In our example, the reply is the quantity of available food at the moment when
the creature is ready to start eating. This is described in Listing 2.6.

� �
1 hungry() ->
2 gen_fsm:sync_send_event(creature, eat).
3
4 cheese_day(eat, Caller, #storage{cheese = Cheese} = S) ->
5 gen_fsm:reply(Caller, {cheese_left, Cheese}),
6 {next_state, cheese_day, S#storage{cheese = Cheese - 1}}.
7
8 lettuce_day(eat, Caller, #storage{lettuce = Lettuce} = S) ->
9 gen_fsm:reply(Caller, {lettuce_left, Lettuce}),
10 {next_state, lettuce_day, S#storage{lettuce = Lettuce - 1}}.
11
12 grapes_day(eat, Caller, #storage{grapes = Grapes} = S) ->
13 gen_fsm:reply(Caller, {grapes_left, Grapes}),
14 {next_state, grapes_day, S#storage{grapes = Grapes - 1}}.� �

Listing 2.6: Example of synchronous event handling

We can, also, simulate the situation when the creature goes shopping to buy some new
food. This is handled via an asynchronous event, as described in Listing 2.7. Asynchronous
events to be handled by Mod:StateName/2 are sent with gen_fsm:send_event(Name,
Event). Last but not least, we can simulate the beginning of a new day by asynchronously
specifying the creature’s food for that day. This is described in Listing 2.8.

26 Chapter 2. A Short Introduction to Erlang and OTP

� �
1 buy(Food, Quantity) ->
2 gen_fsm:send_event(creature, {store, Food, Quantity}).
3
4 cheese_day({store, Food, Quantity}, S) ->
5 case Food of
6 cheese ->
7 {next_state, cheese_day,
8 S#storage{cheese = S#storage.cheese + Quantity}};
9 lettuce ->
10 {next_state, cheese_day,
11 S#storage{lettuce = S#storage.lettuce + Quantity}};
12 grapes ->
13 {next_state, cheese_day,
14 S#storage{grapes = S#storage.grapes + Quantity}}
15 end;
16 lettuce_day({store, Food, Quantity}, S) ->
17 ...
18 grapes_day({store, Food, Quantity}, S) ->
19 ...� �

Listing 2.7: Example of asynchronous event handling

� �
1 new_day(Food) ->
2 gen_fsm:send_event(creature, {new_day, Food}).
3
4 cheese_day({new_day, lettuce}, S) ->
5 {next_state, lettuce_day, S};
6 cheese_day({new_day, grapes}, S) ->
7 {next_state, grapes_day, S}.
8
9 lettuce_day({new_day, cheese}, S) ->
10 {next_state, cheese_day, S};
11 lettuce_day({new_day, grapes}, S) ->
12 {next_state, grapes_day, S}.
13
14 grapes_day({new_day, cheese}, S) ->
15 {next_state, cheese_day, S};
16 grapes_day({new_day, lettuce}, S) ->
17 {next_state, lettuce_day, S}.� �

Listing 2.8: Another example of asynchronous event handling

2.3 Behaviours 27

Sometimes an event can arrive at any state of the gen_fsm. Instead of sending the message
with gen_fsm:send_event/2 and writing one clause handling the event for each state
function, the message can be sent with gen_fsm:send_all_state_event(Name, Event)
and handled with Mod:handle_event(Event, StateName, StateData). This technique
can be used to stop a gen_fsm that is not part of a supervision tree. The callback function
handling the stop event should return a tuple {stop, normal, NewStateData}, where
normal specifies that it is a normal termination and NewStateData is a new value for the
state data of the gen_fsm. This will cause the gen_fsm to call Mod:terminate(normal,
StateName, NewStateData) and then terminate gracefully. Stopping the gen_fsm is
depicted in Listing 2.9.

� �
1 stop() ->
2 gen_fsm:send_all_state_event(creature, stop).
3
4 handle_event(stop, _StateName, _StateData) ->
5 {stop, normal, []}.
6
7 terminate(_Reason, _StateName, _StateData) ->
8 ok.� �

Listing 2.9: Stopping the finite state machine

Finally, gen_fsm can handle spontaneous messages such as exit signals, or update its
code dynamically while running in a way similar to gen_server. The callback func-
tions handling these cases are Mod:handle_info(Info, StateName, StateData) and
Mod:code_change(OldVsn, StateName, StateData, NewVsn) respectively.

Chapter 3

Property-Based Testing,
Model-Based Testing and PropEr

3.1 An overview of property-based testing with PropEr

PropEr is a property-based testing tool for programs written in the Erlang programming
language. The core PropEr modules focus on testing the behaviour of pure functions. The
input domain of functions is specified through the use of a type language, modeled closely
after the type language of Erlang itself. Properties are written using Erlang expressions,
with the help of a few predefined macros. Should a property fail to pass a test, the failing
test case is automatically simplified to a minimal test case, whose every part is essential
in reproducing the failure. This process is called shrinking. Failing test cases can be saved
and re-applied to the same property, allowing users to easily check if they have successfully
fixed the problem.

PropEr’s salient feature is that it offers a tight integration of the language of types and
specs of Erlang with properties [15]. Apart from types specified in the PropEr’s type-
system notation, native Erlang types can also be used as generators. In addition, any
function specification can be directly used as simple property of a function. Last but
not least, PropEr offers support that significantly simplifies the task of writing generators
for recursive and opaque data types, i.e. data types whose internal representation is not
supposed to be visible outside of their defining module.

PropEr’s capabilities are thoroughly described in other publications [13, 14]. In this sec-
tion, we will present the characteristics directly related to our work.

3.1.1 Properties

Properties are written using Erlang expressions, with the help of a few predefined macros.
A simple property can be specified by wrapping a boolean expression with a ?FORALL
wrapper, which has the following syntax:

?FORALL(Xs, Xs_type, Prop)
The Xs field can contain either a single variable, a tuple of variables or a list of
variables. The Xs_type field must then contain a singlePropEr type (for more on

29

30 Chapter 3. Property-Based Testing, Model-Based Testing and PropEr

the PropEr type system, see the next section), a tuple of types of the same size as
the tuple of variables or a list of types of the same length as the list of variables,
respectively. Tuples and lists can be arbitrarily nested, as long as Xs and Xs_type are
compatible. All the variables inside Xs can (and should) be present as free variables
inside the wrapped property Prop. When a ?FORALL wrapper is encountered, a
random instance of Xs_type is produced and each variable in Xs is replaced inside
Prop by its corresponding instance.

A simple property is specified in Listing 3.1. In this example, we wish to test our im-
plementation of a function that inserts an integer into its right place in a sorted list of
integers. The property states that, after inserting an integer into a sorted integer list, the
list will remain sorted. Sorted lists of integers are produced as instances of the generator
orderedlist(integer()), provided by PropEr.

� �
1 add_sorted(X, List) ->
2 add_sorted(X, List, []).
3
4 add_sorted(X, [], Acc) ->
5 lists:reverse(Acc) ++ [X];
6 add_sorted(X, [H|Tail] = List, Acc) ->
7 case X < H of
8 true ->
9 lists:reverse(Acc) ++ [X] ++ List;
10 false ->
11 add_sorted(X, Tail, [H|Acc])
12 end.
13
14 is_sorted(List) ->
15 List =:= lists:sort(List).
16
17 %---
18
19 prop_is_sorted() ->
20 ?FORALL({I, List},
21 {integer(), orderedlist(integer())},
22 is_sorted(add_sorted(I, List))).� �

Listing 3.1: Example of a property

Additionally, PropEr comes with macros and functions for analyzing test case distribution,
trapping exit signals and providing debugging information on failing test cases. Some
examples are the following:

aggregate(Categories, Prop)
The Categories field can be an expression or statement block that evaluates to
a list of categories - the test case produced will be categorized under one of these
categories. In case no test fails, all produced categories are printed at the end of
testing along with the percentage of test cases belonging to each category.

?TRAPEXIT(Prop)
If the code inside Prop spawns and links to a process that dies abnormally, PropEr
will catch the exit signal and treat it as a test failure, instead of crashing. ?TRAPEXIT
cannot contain any more wrappers.

3.1 An overview of property-based testing with PropEr 31

?WHENFAIL(Action, Prop)
The Action field should contain an expression or statement block that produces
some side-effect (e.g. prints something to the screen). In case the Prop fails, Action
will be executed.

3.1.2 Types and generators

The input domain of functions is specified through the use of a custom type language,
modeled closely after the type language of Erlang itself. Given a type specification, PropEr
can produce a valid instance of that type. What is more, PropEr knows what shrinking
strategy to apply so as to simplify failing instances of each type. The shrinking behaviour
can also be fine-tuned through user-defined shrinking strategies. Apart from types specified
in the PropEr’s type-system notation, native erlang types (both module-local and remote)
can also be used as generators; PropEr knows how to create a shrinker for them.

Examples of supported types are integers, floats, atoms, bitstrings, lists, tuples. These
are denoted as integer(), float(), atom(), bitstring(), list(), loose_tuple(), re-
spectively. PropEr also supports various more specialized types, such as integers within
a given range, denoted as range(Low, High), lists containing elements of a specific type
ElemType, denoted as list(ElemType) and many more.

Additionally, PropEr offers functions and macros that can be applied to types in order to
produce new ones. Some of the most commonly used are:

union(ListOfTypes)
The union of all types in ListOfTypes, which cannot be empty. The random instance
generator is equally likely to choose any one of the types in ListOfTypes. It can
also be written as oneof(ListOfTypes) and elements(ListOfTypes).

weighted_union(ListOfTypes)
A specialization of union(ListOfTypes), where each type in ListOfTypes is as-
signed a frequency, i.e. a positive integer. Types with larger frequencies are more
likely to be chosen by the random instance generator. It can also be written as
wunion(ListOfTypes) and frequency(ListOfTypes).

?LET(Xs, Xs_type, In)
To produce an instance of this type, all appearances of the variables in Xs inside
In are replaced by their corresponding values in a randomly generated instance of
Xs_type. It’s OK for the In part to evaluate to a type - in that case, an instance of
the inner type is generated recursively.

?SUCHTHAT(X, Type, Condition)
This produces a specialization of Type, which only includes those members of Type
that satisfy the constraint Condition, i.e. those terms for which the function fun(X)
→ Condition end returns ‘true’. Testing will be stopped in case a constraint tries
limit is reached.

noshrink(Type)
Creates a new type which is equivalent to Type, but whose instances are never shrunk
by the shrinking subsystem.

32 Chapter 3. Property-Based Testing, Model-Based Testing and PropEr

PropEr also supports user-defined recursive data types. To guide the generation process of
a recursive data type, the user must handle the ‘size’ parameter (i.e. the parameter that
controls the maximum size of produced instances) manually: she has to write a recursive
generator function that accepts a Size parameter, which should be distributed among
all recursive calls of each recursion path. The following macros and functions are mainly
useful for writing recursive type declarations:

?SIZED(Size, Generator)
Constructs a new type from a sized generator. To produce instances of this type,
PropEr will apply the current value of ‘size’ to the function fun(Size) → Generator
end.

resize(NewSize, Type)
This declaration instructs PropEr to use NewSize instead of the value of the ‘size’
parameter to produce instances of Type. One use of this function is to modify types to
grow faster or slower, like so: ?SIZED(Size, resize(Size * 2, list(integer())).
The above specifies a list type that grows twice as fast as normal lists.

?LAZY(Type)
This construct delays the generation of Type. Users should wrap each recursive
choice in the non-zero-size clause of a recursive generator with a ?LAZY macro, so as
to achieve linear generation time.

3.1.3 Symbolic representation

When writing properties that involve abstract data types, such as dictionaries or sets, it is
usually best to avoid dealing with the ADTs’ internal representations directly. Working,
instead, with a symbolic representation of an ADT’s construction process (series of API
calls) has several benefits, as it makes failing test cases easier to read and understand and,
more importantly, easier to shrink.

In order to allow for blackbox testing of abstract data types, PropEr supports the symbolic
representation of function calls, using the following syntax: {call, Module, Function,
Arguments}. A term like that represents a call to the API function Module:Function
with arguments Arguments. Each of the arguments may be a symbolic call itself or contain
other symbolic calls in lists or tuples of arbitrary depth. Additionally, PropEr supports
the symbolic representation of variables, using the syntax: {var, VarId}. This construct
serves as a placeholder for values that are not known at type construction time. It will be
replaced by the actual value of the variable during evaluation. The eval/1 function can
be used to evaluate a symbolic instance, i.e. calculate the concrete term it represents.

3.2 Using PropEr to test stateful systems: the idea

Typical Erlang applications consist of telecom software, database management systems,
web servers and other kinds of reactive systems, i.e. systems that maintain an ongoing
interaction with their environment through events. The behaviour of a reactive system
is highly dependent on the internal state of that system, as well as on the state of its
environment. The term internal state refers to the implicit state of a system, that is

3.2 Using PropEr to test stateful systems: the idea 33

continuously changing as a result of the system’s interaction with its environment. Usually,
the state is not memory-less but depends on previous events. Given the internal state of a
system, one should be able to fully determine the possible side-effects. The main problem
associated with testing stateful systems is that their internal state is not observable, as it
is not directly accessible to the user from the API of the system under test.

In order to be able to test stateful reactive systems in an automated way, a formal specifi-
cation of their internal state and, therefore, of the possible side-effects is necessary. Such
systems are typically represented as abstract models. State transition systems (FSMs,
Extended FSMs (EFSMs), state charts, flow charts, Markov chains etc.) representing the
possible configurations of the system under test are most often used as models. Executable
paths through such a state-based specification can then be translated into test cases. This
technique is generally described as Model-Based Testing [9, 17].

3.2.1 Model-Based Testing

Model-Based Testing (MBT) is a test method in which test case generation and evaluation
are based on an abstract model of the system under test (SUT) and/or its environment.
The model is a depiction of the system’s intended behaviour.

Model-based testing typically involves the following activities [17, 9, 5, 8]:

1. Building an abstract model of the system under test, based on functional require-
ments or existing specification documents.

2. Defining the test selection criteria. These criteria will be used to choose a subset of
behaviours of the model that are most likely to detect severe failures.

3. Transforming test selection criteria into concrete test case specifications. Given a
model and a test case specification, some automatic test case generator must be able
to derive a test suite.

4. Validating the model against system requirements so as to detect possible deficien-
cies.

5. Generating test cases deriving information from the model and the test case spec-
ifications. These test cases are expressed in terms of the abstractions used in the
model.

6. Translating abstract test cases into an executable form.

7. Executing test cases and assigning them a pass/fail verdict.

8. Analyzing the execution results.

A great advantage of model-based testing is that it facilitates automatic generation of
large and compact test suites, exploiting the rich theoretical background that is available
for state-based models. Moreover, the model serves as a checkable, shareable and reusable
partial specification of the system under test. It provides information on tests that have
been run, but also gives insight into what tests have not been run yet.

34 Chapter 3. Property-Based Testing, Model-Based Testing and PropEr

On the other hand, this technique requires sizeable initial effort. Selecting the type of
model, partitioning system functionality into multiple parts of a model and finally building
the model can be labour-intensive tasks when it comes to complicated systems. The model
should be simpler and easier to check than the SUT, but, at the same time, it should be
comprehensive and precise so as to serve as basis for meaningful test case generation [9].

When implementing a model-based testing tool, one has to determine the relevant timing
and possible interaction between test case generation and execution. There are two options
to consider:

1. On-line testing suggests that test case generation is mixed with execution, so that
the generation algorithm can react to the actual outputs of the SUT. This technique
is usually applied to handle the non-determinism inherent in reactive or concurrent
systems behaviour.

2. Off-line testing suggests that test cases are generated strictly before they are run.
The main advantage of this approach is related to regression testing, since test cases
can be generated once and then executed multiple times on the system under test.
Last but not least, it allows for analyzing and shrinking failing test cases.

3.2.2 Our approach to testing stateful systems

Our approach to testing stateful systems follows the model-based testing paradigm. PropEr
is used in all different phases of the test process that we described in the previous section.
A behavioral model of the system under test is specified in a callback module, using Er-
lang and PropEr expressions. Testing is driven by PropEr-supported types and generators,
which are included in the callback functions to produce directed random test data.

The symbolic representation supported for abstract data types can be readily used for
symbolically representing test cases for stateful systems. Thus, an off-line test method is
adopted: test cases are symbolically generated strictly before they are run. The reasons
for this choice are explained in the next chapter. As a next step, symbolic test cases
are evaluated using the eval/1 function and available information from the model. The
pass/fail verdict can be assigned by formulating and testing a property stating that the
system under test behaves as specified in the model. Last but not least, we can use
PropEr’s statistics-collecting and debugging macros and functions to analyze the results
of execution.

In the next chapter, we describe in detail how PropEr can be used for random model-based
testing of stateful reactive systems.

Chapter 4

Testing Stateful Systems

We have implemented two library modules, namely proper_statem and proper_fsm, for
model-based testing of stateful code. The model behaviour of the system under test (SUT)
is defined in a callback module. Given this model, we test a stateful system by generating
and performing sequences of calls to that system, while monitoring its actual responses to
ensure the system behaves as expected.

4.1 PropEr Statem

Reactive systems are typically specified using abstract models. Most often, these models
are state transition systems representing the possible configurations of the system under
test. Adopting this idea, we implemented proper_statem to test reactive stateful systems
whose internal state and side-effects are specified via an abstract state machine. When
referring to model state, we mean the state of the abstract state machine.

4.1.1 General concepts

Test case representation

Test cases generated for testing a stateful system are lists of symbolic API calls to that
system. Symbolic representation has several benefits, listed here in increasing order of
importance:

• Generated test cases are easier to read and understand.

• Failing test cases are easier to shrink.

• The generation phase is side-effect free and this results in repeatable test cases,
which is essential for correct shrinking of failing testcases and for re-checking a
counterexample against the property that it falsified.

Symbolic calls are not executed during test case generation. Therefore, the actual result
of a call is not known at generation time and cannot be used in subsequent operations. To

35

36 Chapter 4. Testing Stateful Systems

remedy this situation, symbolic variables are used. A command is a symbolic term, used
to bind a symbolic variable to the result of a symbolic call.
Listing 4.1 contains a command sequence that could be used to test the process dictio-
nary, a process-local destructively-updated store owned by every Erlang process. In this
example, the first call stores the pair {a,42} in the process dictionary, while the second
one deletes it. Finally, a new pair {b, {var,2}} is stored. {var,2} is a symbolic variable
bound to the result of erlang:erase/1. This result is not known at generation time since
none of these operations is actually performed at that time. After evaluating the command
sequence at runtime, the process dictionnary will eventually contain the pair {b,42}.� �

1 [{set, {var,1}, {call,erlang,put,[a,42]}},
2 {set, {var,2}, {call,erlang,erase,[a]}},
3 {set, {var,3}, {call,erlang,put,[b,{var,2}]}}]� �

Listing 4.1: Example of a command sequence

Generation time vs runtime

The method used for testing stateful systems is a combination of symbolic with actual
execution of test cases. Each test consists of two phases:

• As a first step, PropEr generates random symbolic command sequences deriving
information from the callback module implementing the abstract state machine.
These command sequences model the operations in the system under test (SUT).
During this phase, PropEr might interact with the SUT only to initialize the model
state.

• As a second step, symbolic command sequences are evaluated in order to check that
the system behaves as expected. Upon failure, the shrinking mechanism attempts
to find a minimal command sequence provoking the same error. During this phase,
PropEr interacts with the SUT by performing API calls to it, while monitoring its
responses.

The model state is used to model the internal state of the system under test, which is not
accessible to the user from the system’s API. During each test, the model state can be
either symbolic or dynamic:

• During command generation time, we use symbolic variables to bind the results of
symbolic calls. Therefore, the model state might contain symbolic variables and/or
symbolic calls, which are necessary to operate on symbolic variables. Thus, we refer
to it as symbolic state. For example, assuming that the internal state of the process
dictionary is modeled as a property list (i.e. an association list between atom-
based keys and values), the model state after generating the command sequence in
Listing 4.1 will be [{b, {var,2}}].

• During command execution time, symbolic calls are evaluated and symbolic variables
are replaced by their corresponding real values. Now we refer to the state as dynamic
state. After running the command sequence in Listing 4.1, the model state will be
[{b,42}].

4.1 PropEr Statem 37

4.1.2 Defining a callback module

The following functions must be exported from the callback module implementing the
abstract state machine:

initial_state()
Specifies the symbolic initial state of the state machine. This state will be evaluated
at command execution time to produce the actual initial state. The function is not
only called at generation time, but also in order to initialize the state every time
the command sequence is run (i.e. during normal execution, while shrinking and
when re-checking a counterexample). For this reason, it should be deterministic and
self-contained.

command(SymbState)
Generates a symbolic call, given the current state SymbState of the abstract state
machine. This function will be repeatedly called to produce the next symbolic call
to be included in the test case. PropEr automatically binds the result of generated
symbolic calls to symbolic variables. In other words, symbolic calls are automatically
translated to commands. However, before the call is actually included, a precondition
is checked.

precondition(SymbState, Call)
Specifies the precondition that should hold so that Call can be included in the
command sequence, given the current SymbState of the abstract state machine. In
case a precondition does not hold, a new call is chosen using the command/1 generator.
If preconditions are very strict, it will take a lot of tries for PropEr to randomly
choose a valid command. Since preconditions are imposed via a ?SUCHTHAT macro
(described in Chapter 3), testing will be stopped in case a constraint tries limit is
reached. If this is the case, the tester should modify the command/1 generator so
that it produces valid commands more frequently.

postcondition(DynState, Call, Result)
Specifies the postcondition that should hold about the Result of evaluating the
symbolic Call, given the dynamic state DynState of the abstract state machine
prior to performing the call. This function is called during command execution
time, this is why the state is dynamic.

next_state(State, Result, Call)
Specifies the next state of the abstract state machine, given the current State, the
symbolic Call chosen and its Result. This function is called both at command gen-
eration and command execution time in order to determine the next state, therefore
State and Result can be either symbolic (i.e. containing symbolic variables and/or
symbolic calls) or dynamic (i.e. containing real values).

Defining preconditions to exclude invalid operations is an example of positive testing,
i.e. testing aimed at showing that software works when provided with valid input. In
some cases, we may wish to perform negative testing, i.e. testing aimed at showing that
exceptions are raised in case of invalid input. This can be achieved by moving constraints
from preconditions to postconditions. When removing a constraint from a precondition,
we need to catch the exceptions raised from invalid operations. Then, when adding the

38 Chapter 4. Testing Stateful Systems

constraint to a postcondition, we should check that when executing an invalid operation,
the expected kind of exception is indeed raised.

4.1.3 Implementation details

In this section we describe how we implemented the symbolic command generators, using
only PropEr’s API, and how symbolic command sequences are executed in order to assign
a pass/fail verdict to each test case.

Command generation phase

The following functions can be used to generate test cases for stateful systems:

commands(Module)
Generates random symbolic command sequences, deriving information from the
abstract state machine specified in Module. The initial state is computed by
Module:initial_state/0.

commands(Module, InitialState)
Similar to commands/1, but the generated command sequences always start at
InitialState. The first command is {init, InitialState} and is used to
initialize the state every time the command sequence is run. In this case,
Module:initial_state/0 is never called.

The callback functions used during command generation are initial_state/0,
command/1, precondition/2 and next_state/3. The next symbolic call to be included
in the test case is determined by the command/1 callback, which takes as argument the
model state. On the other hand, each symbolic call chosen may update the model state
via the next_state/3 callback. Due to this mutual dependency between the model state
and the symbolic calls, commands have to be generated recursively. Also, each command
included in the test case must satisfy a precondition. This constraint is expressed via a
?SUCHTHAT macro. Apart from the name of the callback module (Module) and the model
state (State), the recursive generator takes two extra arguments: an integer N to appear
in the symbolic variable {var, N} that will be used to bind the result of the symbolic call
and an integer Size parameter that controls the probability of adding one more command
to the sequence. The higher the value of Size, the higher the probability of generating
one more command. Each time a command is added to the sequence, the Size parameter
is decreased by one. Therefore, we can be sure that, at some point, it will take a zero value
and command generation will halt. The recursive generator is depicted in Listing 4.2.

Given the recursive command generator, it is straightforward to implement the API
function proper_statem:commands/1, as described in Listing 4.3. The remote call to
Module:initial_state/0 is performed to initialize the model state. The ?SIZED macro
is used to introduce the Size parameter to the recursive generator commands/4. A point
that requires special attention is the effective shrinking of command sequences. The recur-
sive generator commands/4 is enclosed in a noshrink/1 wrapper to prevent PropEr from
applying the predefined shrinking strategies. If we had omitted this wrapper, PropEr

4.1 PropEr Statem 39

� �
1 -spec commands(size(), mod_name(), symbolic_state(), pos_integer()) ->
2 proper_types:type().
3 commands(Size, Module, State, N) ->
4 ?LAZY(
5 proper_types:frequency(
6 [{1, []},
7 {Size, ?LET(Call,
8 ?SUCHTHAT(X, Module:command(State),
9 Module:precondition(State, X)),
10 begin
11 Var = {var,N},
12 NextState = Module:next_state(State, Var, Call),
13 ?LET(Cmds,
14 commands(Size-1, Module, NextState, N+1),
15 [{set,Var,Call}|Cmds])
16 end)}])).� �

Listing 4.2: Recursive command generator

would try new commands in place of the existing ones in an attempt to produce a sim-
pler test case. But our goal is to eliminate commands that do not contribute to failure.
This goal could have been achieved via a ?LETSHRINK macro, which is normally used for
shrinking recursive generators. However, since test cases are lists of commands, it seemed
more intuitive and effective to use the shrinking strategies that PropEr applies to simple
lists. To this end, we introduced a special generator, shrink_list(InputList). At gen-
eration time this generator has no effect, since it will generate exactly its input argument.
However, it can be useful during shrinking, as it inherits the shrinking strategies that
PropEr applies to simple lists. That is, shrinking a list by discarding elements that do not
contribute to failure. In our case, the elements of the list are commands. Additionally,
we require that shrunk instances should be valid command sequences. A command se-
quence is considered valid when all commands satisfy preconditions and use only symbolic
variables bound to the results of preceding calls in the same sequence.

� �
1 -spec commands(mod_name()) -> proper_types:type().
2 commands(Module) ->
3 ?LET(InitialState, Module:initial_state(),
4 ?SUCHTHAT(
5 Cmds,
6 ?LET(List,
7 ?SIZED(Size,
8 proper_types:noshrink(
9 commands(Size, Module, InitialState, 1))),
10 proper_types:shrink_list(List)),
11 is_valid(Module, InitialState, Cmds, []))).� �

Listing 4.3: Commands/1 implementation

The generator proper_statem:commands/2 is implemented in a similar way. The only
difference lies in the initialization of the model state, which is achieved by adding an
{init, InitialState} command as head of the sequence.

40 Chapter 4. Testing Stateful Systems

Command execution phase

Symbolic command sequences can be evaluated using the following functions:

run_commands(Module, Cmds)
Evaluates a given symbolic command sequence Cmds according to the abstract
state machine specified in Module. First, the model state is initialized via the
Module:initial_state/0 callback. Then, for each symbolic call in the test case,
its arguments are evaluated using the proper_symb:eval/1 function and its precon-
dition is re-checked. Normally, there should not be an error at this point, except
for when re-checking a counterexample. Then, the symbolic call is performed and,
unless an exception is raised, the postcondition is checked. The test passes if all post-
conditions are true and no (unhandled) exception is raised. The result is a triple of
the form {History, DynamicState, Result}, where:

• History contains the execution history of all commands that were run without
raising an exception. It contains tuples of the form {DynState, CmdResult},
specifying the dynamic state prior to command execution and the actual result
of each command.

• DynamicState contains the dynamic state of the abstract state machine at the
moment when execution stopped.

• Result specifies the overall outcome of command execution. A test passes if
Result is the atom ok.

run_commands(Module, Cmds, Environment)
Similar to run_commands/2, but also accepts an Environment, used for symbolic
variable evaluation during command execution. The Environment consists of {Key,
Value} pairs. Keys may be used in symbolic variables (i.e. {var, Key}) whithin
the command sequence Cmds. These symbolic variables will be replaced by their
corresponding Value during command execution.

In order to collect useful information about the commands that were executed, we have
implemented the following additional functions:

command_names(Cmds)
Extracts the names of the calls from a given command sequence, in the form of MFAs
(i.e. in the form {Module, Function, Arity}).

zip(ListA, ListB)
Behaves like lists:zip/2, but the input lists do no not necessarily have equal
length. Zipping stops when the shortest list stops. This is useful for zipping a
command sequence with its (failing) execution history.

Workflow

As mentioned before, each test consists of two phases. First, PropEr generates random
symbolic command sequences, deriving information from the callback module implement-
ing the abstract state machine. This is the role of commands/[1,2] generators. As a

4.1 PropEr Statem 41

second step, command sequences are executed so as to check that the system behaves as
expected. This is the role of the functions run_commands/[2,3]. These two phases are
encapsulated in the property specified in Listing 4.4, which can be used for testing stateful
systems with PropEr. When testing code with side-effects, it is very important to keep
each test self-contained. For this reason, almost every property for testing stateful systems
contains some set-up and/or clean-up code. Such code is necessary to put the system in
a known state, so that the next test can be executed independently from previous ones.

� �
1 prop_stateful() ->
2 ?FORALL(Cmds, commands(?MODULE),
3 begin
4 {_History, _State, Result} = run_commands(?MODULE, Cmds),
5 cleanup(),
6 Result =:= ok
7 end).� �

Listing 4.4: Property to test stateful systems

The workflow of proper_statem, when testing a property similar to that specified in List-
ing 4.4, is summarized in Figure 4.1.

Figure 4.1: PropEr statem workflow

42 Chapter 4. Testing Stateful Systems

4.1.4 Parallel statem testing

Property-based testing can also be used to debug concurrent applications. The Quickcheck
tool from Quviq has been efficiently used, in combination with a custom randomizing
scheduler, to detect race conditions [12]. In that case study, the authors formulate a
property for testing parallel code and describe the outline of a method for generating
parallel test cases. The specification used to determine correct parallel behaviour is that
the API calls to the system under test should behave atomically. A test passes iff the results
observed could have been produced by a possible sequential execution of the operations in
the parallel test case.

These ideas have been implemented in the proper_statem library module. The abstract
state machine specification that is used for sequential testing can also be used for gener-
ating command sequences that will be executed in parallel to test for race conditions. A
parallel test case consists of a sequential and a parallel component. The sequential com-
ponent is a command sequence that is run first to put the system in a random state. The
parallel component is a list of command sequences that are executed in parallel, each of
them in a separate newly-spawned process. After running a parallel test case, PropEr uses
the state machine specification to check if the results observed could have been produced
by a possible sequentialization of the parallel component. If no such sequentialization
is possible, then an atomicity violation has been detected. In this case, the shrinking
mechanism attempts to produce a counterexample that is minimal in terms of concurrent
operations.

Parallel test case generation

A parallel test case consists of a sequential prefix component and a list of concurrent
tasks. Generating parallel test cases involves the following actions. Initially, we generate a
command sequence deriving information from an abstract state machine specification, as in
the case of sequential statem testing. Then, we parallelize a random suffix of the command
sequence by splitting it into a pre-defined number of concurrent tasks. The initial relevant
ordering of commands must be preserved within each task. We will have to explore all
possible interleavings of the concurrent tasks in order to generate an appropriate parallel
test case. Therefore, it is important to keep the number of such interleavings feasible to
enumerate. The ?LIMIT macro is used to specify the maximum length of a suffix to be
parallelized and the ?WORKERS macro is used to specify the number of concurrent tasks.
These two parameters can be modified for experimentation without the need to make
further changes to the code. However, care has to be taken since the number of possible
command interleavings is exponential in both the number of parallel ?WORKERS and the
?LIMIT length of each command sequence. More precisely, given n parallel processes that
each executes m commands, the number of possible interleavings is (n∗m)!

m!n .

In our current implementation, a suffix no longer than 12 commands is split in 2 lists of
approximately the same length, if possible. Limitations arise from the fact that each list
should be a valid command sequence (i.e. all commands should satisfy preconditions and
use only symbolic variables bound to the results of preceding calls in the same sequence).
Furthermore, we apply an additional check: we have to ensure that preconditions are
satisfied in all possible interleavings of the concurrent tasks. Otherwise, an exception
might be raised during parallel execution and lead to unexpected (and unwanted) test

4.1 PropEr Statem 43

failure. In case this constraint cannot be satisfied for a specific test case, the test case will
be executed sequentially. Then an ‘f’ is printed on screen to inform the user. This usually
means that preconditions need to become less strict for parallel testing to work. Moving
constraints from preconditions to postconditions is a simple and efficient way to handle
such cases.

Parallel test cases can be generated using parallel_commands(Module), where Module is
the name of the callback module that contains the abstract state machine specification.
Our implementation of parallel_commands/1 is described in Listing 4.5. The innermost
?LET is used to generate the parallel test case and provide the main shrinking strategy,
while the outermost ?LET provides an additional shrinker for parallel test cases. These
steps will be explained in further detail in the rest of this section.

� �
1 -define(LIMIT, 12).
2 -define(WORKERS, 2).
3
4 -spec parallel_commands(mod_name()) -> proper_types:type().
5 parallel_commands(Module) ->
6 ?LET({ShrunkSequential, ShrunkParallel},
7 ?LET({Sequential, Parallel},
8 noshrink(parallel_gen(Module)),
9 parallel_shrinker(Module, Sequential, Parallel)),
10 move_shrinker(ShrunkSequential, ShrunkParallel, ?WORKERS)).� �

Listing 4.5: Parallel test case generator

In order to generate a parallel test case, we have to split a selected suffix of the initial com-
mand sequence into ?WORKERS subsequences that satisfy the aforementioned constraints.
To this end, we lazily produce possible ways of splitting the original command sequence,
until we reach one that satisfies the constraints. As it is more convenient to lazily pro-
duce possible combinations when working with integers instead of commands, we create a
lookup dictionary that associates each command with an integer denoting the position of
the command in the original list. The initial combination for splitting 10 commands into
3 sublists would look like so: [{1, [7, 8, 9, 10]}, {2, [4, 5, 6]}, {3, [1, 2, 3]}]. This means that
commands associated with the indexes 7, 8, 9, 10 are assigned to the first concurrent task,
commands associated with indexes 4, 5, 6 to the second task and so on. For a combination
to be valid, the indices in each sublist must be in increasing order and no duplicates are
permitted.

After producing a valid combination, we check whether it satisfies specific constraints (this
point will be elaborated in the next paragraph). In case the constraints are satisfied, a
parallel test case has been generated. If this is not the case, we need to produce the
next combination. To achieve this, we initially try to re-order the indices in the first two
sublists. In case of ?WORKERS = 2, this is all that can be done. In the general case of
?WORKERS ≥ 2, after trying all possible valid re-orderings of the indices in the first two
sublists, we make a change to the third sublist and then try again the new possible re-
orderings of the first two sublists. This technique is generalised to handle an arbitrary
number of parallel ?WORKERS. In case the constraints are not satisfied for any produced
test case, we change the expected length of the sublists, assigning more commands to the
first concurrent task. Thus, in the worst case, the whole test case is assigned to only one
task and is executed sequentially.

44 Chapter 4. Testing Stateful Systems

Parallel test cases must satisfy specific constraints. Initially, we have to ensure that each
sublist is a valid command sequence. If this is the case, we can move on to check the second
constraint: that preconditions are satisfied in all possible interleavings of the concurrent
tasks. Sharing Donald Knuth’s opinion on the perils of ‘premature optimization’, we
have kept our approach as simple as possible for the time being; we produce all possible
interleavings and then check if preconditions are satisfied. The method is computationally
feasible as long as we carefully choose the values of the ?WORKERS and ?LIMIT macros.

Interleavings of two command sequences are produced using the function insert_all(L1,
L2), as specified in Listing 4.6. This function returns all possible insertions of the el-
ements of the first list, preserving their order, into the second list. The implemen-
tation of insert_all/2 depends on all_insertions/3 and index/2. The function
all_insertions(Element, Limit, List) returns all possible insertions of Element into
List with the constraint that Element should be inserted in a position with index less
than Limit. Indexing is zero-based. The function index(X, List) returns the posi-
tion of the first occurence of X in List. The head of the list is at position 1. The
technique is easily generalised to produce all possible interleavings between an arbitrary
number of command sequences. This is also described in Listing 4.6, where the function
possible_interleavings/2 is specified.

� �
1 -spec insert_all([term()], [term()]) -> [[term()]].
2 insert_all([], List) ->
3 [List];
4 insert_all([X], List) ->
5 all_insertions(X, length(List) + 1, List);
6
7 insert_all([X|[Y|_] = Tail], List) ->
8 [L2 || L1 <- insert_all(Tail, List),
9 L2 <- all_insertions(X, index(Y, L1), L1)].
10
11 -spec possible_interleavings([command_list()]) -> [command_list()].
12 possible_interleavings([P1,P2]) ->
13 insert_all(P1, P2);
14 possible_interleavings([P1|Rest]) ->
15 [I || L <- possible_interleavings(Rest),
16 I <- insert_all(P1, L)].� �

Listing 4.6: Producing command interleavings

Shrinking of parallel test cases does not depend on the generation process. For this reason,
as we can notice in Listing 4.5, the generator parallel_gen/1 is enclosed in a noshrink/1
wrapper that prevents PropEr from applying predefined shrinking strategies to parallel
test cases. Since the sequential prefix and the concurrent tasks are lists of commands,
they should inherit the methods that PropEr uses to shrink command lists. This is the
role of parallel_shrinker/3, which is applied via the innermost ?LET in Listing 4.5.
Furthermore, the commands of the parallel component may (and usually do) depend on
the sequential prefix. Since we are interested in counterexamples that are minimal in
terms of concurrent operations, we attempt to shrink the parallel component first, then
the sequential. The main shrinking strategy applied to parallel test cases is depicted in
Listing 4.7.

In Listing 4.8 we describe an additional shrinker that is applied on top of the main shrinkers

4.1 PropEr Statem 45

� �
1 -spec parallel_shrinker(mod_name(), command_list(), [command_list()]) ->
2 proper_types:type().
3 parallel_shrinker(Mod, Sequential, Parallel) ->
4 I= Mod:initial_state(),
5 ?SUCHTHAT({Seq1, Parallel1},
6 ?LET(ShrunkParallel,
7 [proper_types:shrink_list(P) || P <- Parallel],
8 ?LET(ShrunkSequential,
9 proper_types:shrink_list(Sequential),
10 {ShrunkSequential, ShrunkParallel})),
11 lists:all(
12 fun(P) -> is_valid(Mod, I, Seq1 ++ P, []) end,
13 Parallel1)).� �

Listing 4.7: Main shrinker for parallel test cases

and attempts to move as many commands as possible from the parallel to the sequential
component. This is achieved via a ?SHRINK(Type, AltGens) macro that allows the
tester to provide a list of additional generators, AltGens, that serve as primary shrinking
targets for the specific Type. Upon failure, these generators are first run to produce
hopefully simpler instances of Type. In our case, the alternative generators AltGens
remove command slices of different lengths from the parallel component and add them to
the sequential prefix.

� �
1 -spec move_shrinker(command_list(), [command_list()], pos_integer()) ->
2 proper_types:type().
3 move_shrinker(Sequential, Parallel, 1) ->
4 ?SHRINK({Sequential, Parallel},
5 [{Sequential ++ Slice, remove_slice(1, Slice, Parallel)}
6 || Slice <- get_slices(lists:nth(1, Parallel))]);
7 move_shrinker(Sequential, Parallel, I) ->
8 ?LET({ShrunkSequential, ShrunkParallel},
9 ?SHRINK({Sequential, Parallel},
10 [{Sequential ++ Slice, remove_slice(I, Slice, Parallel)}
11 || Slice <- get_slices(lists:nth(I, Parallel))]),
12 move_shrinker(ShrunkSequential, ShrunkParallel, I-1)).� �

Listing 4.8: Additional shrinker for parallel test cases

Testing for race conditions

Parallel test cases are run using run_parallel_commands(Module, TestCase), where
Module is the name of the callback module and TestCase is the paralllel test case to be exe-
cuted. This function evaluates the sequential prefix using proper_statem:run_commands/2
and then executes the concurrent tasks in separate newly-spawned processes, while col-
lecting their results. The function used to execute a command sequence has to be mapped
to each of the concurrent tasks. To this end, we have implemented an SMP alternative
of lists:map/2, called pmap/2, inspired from a talk from Ulf Wiger [18]. Using pmap/2,
we spawn and link to ?WORKERS new processes and instruct them to execute the concur-
rent tasks. Upon completion of its task, each worker process reports back the command

46 Chapter 4. Testing Stateful Systems

execution history and terminates gracefully. Preconditions are satisfied in all possible
interleavings of the parallel processes, since this was a prerequisite for generated parallel
test cases. Thus, no unhandled exceptions are normally raised during parallel execution.

As a next step, we attempt to construct a sequentialization of the parallel component
which explains the results observed. In other words, we look for an interleaving of the
parallel processes in which the postconditions specified in the abstract state machine are
satisfied. This is achieved by examining the available commands in a depth-first order. As
soon as the result of a command does not satisfy a postcondition, then this interleaving
and all subsequent ones can be pruned. However, this does not suggest that we can discard
the specific command, since it may become valid after one or more commands from the
other concurrent tasks have been added to the sequentialization. Our goal is to consume
all commands in an order that explains the results observed.

The search algorithm has been implemented in a generic way to account for an arbitrary
number of concurrent tasks. It is depicted in Listing 4.9. The lists Tried and ToTry contain
the tasks that have already been (unsuccessfully) tried and the ones that remain to be
tried, respectively. After consuming one or more commands from a task, it is necessary
to explore all other non-empty tasks once again. This is why they are stored in the Tried
list, to be retrieved later. We also keep a flag Changed to record whether some command
has been consumed while examining the ToTry list of tasks. In case all tasks have been
moved to the Tried list and the flag is still ‘false’ (i.e. no command has been consumed),
then there is no possible sequentialization that explains the results observed.

� �
1 -spec check(mod_name(), dynamic_state(), proper_symb:var_values(),
2 boolean(), [parallel_history()], [parallel_history()]) -> boolean().
3 check(_Mod, _State, _Env, _Changed, [], []) -> true;
4 check(_Mod, _State, _Env, false, _Tried, []) -> false;
5 check(Mod, State, Env, true, Tried, []) ->
6 check(Mod, State, Env, false, [], Tried);
7 check(Mod, State, Env, Changed, Tried, [P|ToTry]) ->
8 case P of
9 [] ->
10 check(Mod, State, Env, Changed, Tried, ToTry);
11 [H|Tail] ->
12 {{set, {var,N}, {call,M,F,A}}, Res} = H,
13 M_ = proper_symb:eval(Env, M),
14 F_ = proper_symb:eval(Env, F),
15 A_ = proper_symb:eval(Env, A),
16 Call = {call,M_,F_,A_},
17 case Mod:postcondition(State, Call, Res) of
18 true ->
19 Env2 = [{N, Res}|Env],
20 NextState = proper_symb:eval(
21 Env2, Mod:next_state(State, Res, Call)),
22 check(Mod, NextState, Env2, true, Tried, [Tail|ToTry])
23 orelse check(Mod, State, Env, Changed,
24 [P|Tried], ToTry);
25 false ->
26 check(Mod, State, Env, Changed, [P|Tried], ToTry)
27 end
28 end.� �

Listing 4.9: Attempt to construct a sequentialization of the results observed

4.2 PropEr FSM 47

The result of run_parallel_commands/2 is a triple of the form {Sequential_history,
Parallel_history, Result}, where:

• Sequential_history contains the execution history of the sequential prefix.

• Parallel_history contains the execution history of each of the concurrent tasks.

• Result specifies the outcome of the attemp to serialize command execution, based
on the results observed. It can be one of the atoms:

– ok
– no_possible_interleaving

The procedure that we described for parallel testing for race conditions can be encapsulated
in the property described in Listing 4.10.

� �
1 prop_parallel_testing() ->
2 ?FORALL(Testcase, parallel_commands(?MODULE),
3 begin
4 {_Sequential, _Parallel, Result} =
5 run_parallel_commands(?MODULE, Testcase),
6 cleanup(),
7 Result =:= ok
8 end).� �

Listing 4.10: Property for parallel testing

As a final remark, we should note that the actual interleaving of commands of the parallel
component depends on the Erlang scheduler, which is too deterministic. For PropEr to be
able to detect race conditions using parallel statem testing, the code of the system under
test should be instrumented with erlang:yield/0 calls to the scheduler.

4.2 PropEr FSM

We have developed another library module, proper_fsm, which offers a convenient way
to test systems exhibiting a finite state machine behaviour. That is, systems that can
be easily modeled as a finite collection of named states and transitions between them.
Proper_fsm is closely related to proper_statem and is, in fact, implemented in terms of
that. Test cases generated using proper_fsm will be on precisely the same form as test
cases generated using proper_statem. The difference lies in the way the callback modules
are specified. A typical finite state machine representation of a system is the state diagram.
Proper_fsm is designed to bring the callback module specification very close to a state
diagram.

The relation between proper_statem and proper_fsm is similar to that between gen_server
and gen_fsm in OTP libraries. The abstract state machine modeled by a proper_statem
callback module can be considered to be a server and all events may arrive at any time.
The finite state machine modeled by a proper_fsm callback module limits the possibility
to events that can only happen in a certain state.

48 Chapter 4. Testing Stateful Systems

4.2.1 Changes in the callback module

State representation

Following the convention used in gen_fsm behaviour, the state is separated into StateName
and StateData. StateName is used to denote a named state of the FSM and StateData
is any relevant information that has to be stored in the model state. States are fully
represented as tuples {StateName, StateData}.
StateName is usually an atom (i.e. the name of the state), but can also be a tuple. In
the latter case, the first element of the tuple must be an atom specifying the name of the
state, whereas the rest of the elements can be arbitrary terms specifying state attributes.
For example, when implementing a finite state machine of an elevator which can reach
N different floors, the StateName for each floor could be {floor, i}, 1 ≤ i ≤ N.
StateData can be an arbitrary term, but is usually a record.
Splitting the model state into StateName and StateData makes the states of the finite
state machine more explicit and allows the specification to be closer to a state diagram
of the system under test. The proper_statem:command/1 generator is replaced by a
collection of callback functions, one for each reachable state of the FSM. Each callback
function is named after the state it represents and takes the StateData as argument. If
the StateName is a tuple, the callback is named after its first element. In this case, the
state attributes are passed as arguments, along with the StateData.
The state is initialized via the initial_state/0 and initial_state_data/0 callbacks.
The former specifies the initial state of the finite state machine, while the latter specifies
what the state data should initially contain. As with proper_statem:initial_state/0,
these functions are called both at generation time and at runtime to correctly initialize
the model state.

Specifying transitions

As mentioned above, there is a separate callback function for each state of the finite state
machine. This function specifies a list of possible transitions from that state. A transition
is represented as a tuple {TargetState, SymbCall}. This means that performing the
specified symbolic call, while being at the current state of the finite state machine, will
lead to TargetState. The atom history can be used as TargetState to denote that a
transition does not change the current state of the FSM.
Let us assume that we want to specify the finite state machine of a television. Listing 4.11
shows how to model the possible transitions from the two states of the FSM. In this simple
example, the StateData represents the current tv channel and is not actually used in the
transition specifications. The StateData is updated via a separate callback function that
will be described later.
At command generation time, the callback function corresponding to the current state of
the finite state machine will be called to return the list of possible transitions from that
state. Then, PropEr will randomly choose a transition and, according to that, generate
the next symbolic call to be included in the command sequence.
By default transitions are chosen with equal probability. In order to fine-tune the
frequency with which each transition is chosen, we can define the optional callback

4.2 PropEr FSM 49

� �
1 tv_on(_Channel) ->
2 [{history, {call,tv,turn_on,[]}},
3 {history, {call,tv,switch_channel,[channel()]}},
4 {tv_off, {call,tv,turn_off ,[]}}].
5
6 tv_off(_Channel) ->
7 [{history, {call,tv,turn_off,[]}},
8 {tv_on, {call,tv,turn_on ,[]}}].� �

Listing 4.11: Specifying transitions for the FSM of a tv

weight(FromState, TargetState, SymbCall). This callback assigns an integer weight
to transitions from FromState to TargetState triggered by symbolic call SymbCall. Each
transition is chosen with probability proportional to the weight assigned.

Additionally, PropEr detects transitions that would raise an exception of class <error> at
generation time (not earlier) and does not choose them. This feature was introduced for
compatibility with Quviq Quickcheck and can be used to include conditional transitions
that depend on the StateData.

Other callback functions

Preconditions and postconditions are also imposed on the finite state machine specification.
Only now these callbacks take a slightly different form. Instead of the State argument that
was provided in proper_statem callbacks, the callbacks in proper_fsm take into account
the origin of a transition (FromState), the target of a transition (TargetState) and the
StateData. The set of callback functions corresponding to the states of the FSM update
part of the model state, since they specify the target state of a transition. In order to
update the StateData, we have to define a separate callback function.

precondition(FromState, TargetState, StateData, SymbCall)
Specifies the precondition that should hold so that SymbCall can be included in
the command sequence. In case the precondition doesn’t hold, a new transition is
chosen using the callback function corresponding to the current state of the FSM.
It is possible for more than one transitions to be triggered by the same symbolic
call and lead to different target states. In this case, the precondition callback must
return true for at most one of the target states. Otherwise, PropEr will not be able
to detect which transition was chosen and an exception will be raised.

postcondition(FromState, TargetState, StateData, SymbCall, Result)
Specifies the postcondition that should hold about the Result of the evaluation of
SymbCall. This function is only called at runtime, therefore the StateData contains
real values.

next_state_data(FromState, TargetState, StateData, Result, SymbCall)
Specifies how the transition from FromState to TargetState triggered by SymbCall
affects the StateData. Result refers to the result of SymbCall and can be either
symbolic or dynamic.

50 Chapter 4. Testing Stateful Systems

4.2.2 Implementation details

The proper_fsm library is implemented as a proper_statem callback module. The model
state is a record containing the name of the proper_fsm callback module, as well as
the StateName and StateData of the FSM. The model state is initialized as described
in Listing 4.12. The initial StateName and StateData are easily computed from the
corresponding proper_fsm callbacks, but the name of the callback module has to be passed
as input argument to the function that will initialize the model state, otherwise it cannot
be retrieved. Therefore, the initilization callback will be initial_state/1 instead of
initial_state/0. This difference does not cause an important issue, as we will see in
the next section where we describe our implementation of the proper_fsm API functions.
In the rest of this section, we will describe how the other proper_statem callbacks are
defined, so as to provide a proper_fsm interface.

� �
1 -record(state, {name :: state_name(), %% fsm state name
2 data :: state_data(), %% fsm state data
3 mod :: mod_name()}). %% fsm callback module
4 -type state() :: #state{}.
5
6 -spec initial_state(mod_name()) -> state().
7 initial_state(Module) ->
8 StateName = Module:initial_state(),
9 StateData = Module:initial_state_data(),
10 #state{name = StateName, data = StateData, mod = Module}.� �

Listing 4.12: Initializing the model state

The command/1 generator should return the next symbolic call to be included in the
command sequence, deriving this information from the set of callbacks corresponding
to the FSM states. Our implementation is depicted in Listing 4.13. The function
get_transitions(Module, FromState, StateData) returns all possible transitions
from FromState by applying the callback function associated with this state. Then
choose_transition/3 makes a random choice, taking into account the weight assign-
ment, if such an assignment exists. In fact, choose_transition/3 discards the target
state specified in the transition pattern and only returns the symbolic call chosen (i.e.
the trigger of the transition), since the command/1 callback is expected to return a sym-
bolic call generator, not a transition pattern. When the optional callback weight/3 is not
defined (or not exported), a symbolic call is chosen by applying a union/1 generator to
the list of possible symbolic calls. On the other hand, when this callback is defined and
exported, we apply a weighted_union/1 generator to the list of possible symbolic calls
zipped with their corresponding weights.

A subtle point is that we would like to detect transitions that raise an exception of class
<error> at generation time and not choose them. To achieve that, we have defined
internal exception-catching versions of the union/1 and weighted_union/1 generators
and use these instead. When a specific transition raises an exception of class <error> at
generation time, the internal generators simply ignore that transition and choose another
one instead.

The statem precondition/2 callback should just propagate the result of precondition/4,
as specified in the proper_fsm callback module. However, precondition/4 takes as in-

4.2 PropEr FSM 51

� �
1 -spec command(state()) -> proper_types:type().
2 command(#state{name = FromState, data = StateData, mod = Module}) ->
3 choose_transition(Module, FromState,
4 get_transitions(Module, FromState, StateData)).� �

Listing 4.13: Choosing the next symbolic call

put argument the target of the transition, which is not directly available. The function
target_states(Module, FromState, StateData, Call) is used to retrieve all possible
target states. A state TargetState is a possible target when there is at least one transition
from FromState leading to TargetState, triggered by a symbolic call generator with the
same MFA representation as the given symbolic Call.

As mentioned before, there might be more than one transitions from a given state, trigerred
by the same function call but leading to different targets (for different arguments of the
function call). At most one of these target states may have a true precondition. Therefore,
we filter the list of possible targets and return true in case there is exactly one target state
with a true precondition. If no such target state exists, we return false. In case of multiple
targets, an exception is raised. This is described in Listing 4.14.

� �
1 -spec precondition(state(), symb_call()) -> boolean().
2 precondition(#state{name = FromState, data = StateData, mod = Module}, Call) ->
3 Targets = target_states(Module, FromState, StateData, Call),
4 case [To || To <- Targets,
5 Module:precondition(FromState, cook_history(FromState, To),
6 StateData, Call)] of
7 [] ->
8 false;
9 [_T] ->
10 true;
11 _ ->
12 erlang:error(too_many_targets)
13 end.
14
15 -spec cook_history(state_name(), state_name()) -> state_name().
16 cook_history(From, history) -> From;
17 cook_history(_, To) -> To.� �

Listing 4.14: precondition/2 callback

The statem postcondition/3 callback should propagate the result of postcondition/5,
specified in the proper_fsm callback module. At this point, we can be sure that there is a
unique valid target for the chosen transition, since the precondition/2 callback has pre-
ceded. Therefore, we retrieve the target state of the transition with transition_target/4
and apply the postcondition/5 callback. This is depicted in Listing 4.15.

Finally, the statem next_state/3 callback is used to update the model state. After the
update, the state_name field of the state record should contain the target of the transition
just performed and the state_data field should contain the result of the proper_fsm
next_state_data/5 callback. This is depicted in Listing 4.16.

52 Chapter 4. Testing Stateful Systems

� �
1 -spec postcondition(state(), symb_call(), result()) -> boolean().
2 postcondition(#state{name = From, data = StateData, mod = Module}, Call, Res) ->
3 To = cook_history(From, transition_target(Module, From, StateData, Call)),
4 Module:postcondition(From, To, StateData, Call, Res).� �

Listing 4.15: postcondition/3 callback

� �
1 -spec next_state(state(), symb_var() | result(), symb_call()) -> state().
2 next_state(S = #state{name = From, data = StateData, mod = Module}, Var, Call) ->
3 To = cook_history(From, transition_target(Module, From, StateData, Call)),
4 S#state{name = To,
5 data = Module:next_state_data(From, To, StateData, Var, Call)}.� �

Listing 4.16: next_state/3 callback

4.2.3 API description and implementation

The following functions can be used to test finite state machine specifications:

commands(Module)
A special PropEr generator which generates random command sequences, according
to a finite state machine specification. The function takes as input the name of a
callback module, which contains the FSM specification. The initial state is computed
by {Module:initial_state/0, Module:initial_state_data/0}.

commands(Module, InitialState)
Similar to commands/1, but the generated command sequences always start at
InitialState. In this case, the first command is always {init, InitialState
= {StateName, StateData}} and is used to correctly initialize the model state
every time the command sequence is run.

run_commands(Module, Cmds)
Evaluates a given symbolic command sequence Cmds according to the finite state
machine specified in Module. The result is a triple of the form {History,
DynamicState, Result}, similar to proper_statem:run_commands/2.

run_commands(Module, Cmds, Environment)
Similar to run_commands/2, but also accepts an Environment used for symbolic
variable evaluation, exactly as described for proper_statem:run_commands/3.

state_names(History)
Extracts the names of the states from a given command execution History. It is
useful to collect statistics about state transitions during command execution.

Given the proper_statem callback module described in the previous section, it is
straightforward to define the proper_fsm API functions in terms of the corresponding
proper_statem ones. Our implementation of the proper_fsm command generators is spec-
ified in Listing 4.17. As we have noted, the proper_statem callback module does not define
an initial_state/0 function. Therefore, the model state has to be explicitly initialized

4.2 PropEr FSM 53

via proper_statem:commands/2. In the case of proper_fsm:commands/1, the ?LETmacro
simply discards the {init, InitialState} command that had been placed as head of
the sequence by proper_statem:commands/2. In the case of proper_fsm:commands/2,
the ?LET macro fixes the form of the InitialState that is used in the initilization com-
mand. This is necessary because the model state of the proper_statem callback is a
#state{} record, whereas the model state of the proper_fsm callback should have the
form {StateName, StateData}.� �

1 -spec commands(mod_name()) -> proper_types:type().
2 commands(Module) ->
3 ?LET([_|Cmds],
4 proper_statem:commands(?MODULE, initial_state(Module)),
5 Cmds).
6
7 -spec commands(mod_name(), fsm_state()) -> proper_types:type().
8 commands(Mod, {StateName,StateData} = InitialState) ->
9 State = #state{name = StateName, data = StateData, mod = Module},
10 ?LET([_|Cmds],
11 proper_statem:commands(?MODULE, State),
12 [{init,InitialState}|Cmds]).� �

Listing 4.17: Implementation of proper_fsm command generators

The functions proper_fsm:run_commands/[2,3] are implemented in terms of
proper_statem:run_commands/[2,3], as specified in Listing 4.18. The helper function
tmp_commands(Module, Cmds) adds an extra initialization command to the sequence
Cmds, to ensure that the model state is correctly initialized before the command sequence
is run.� �

1 -spec run_commands(mod_name(), command_list()) ->
2 {history(),fsm_state(),fsm_result()}.
3 run_commands(Module, Cmds) ->
4 run_commands(Module, Cmds, []).
5
6 -spec run_commands(mod_name(), command_list(), proper_symb:var_values()) ->
7 {history(),fsm_state(),fsm_result()}.
8 run_commands(Module, Cmds, Env) ->
9 Cmds1 = tmp_commands(Module, Cmds),
10 {H,S,Result} = proper_statem:run_commands(?MODULE, Cmds1, Env),
11 History = [{{StateName,StateData}, R}
12 || {#state{name = StateName, data = StateData}, R} <- H],
13 State = {S#state.name, S#state.data},
14 {History, State, Result}.� �

Listing 4.18: Implementation of proper_fsm:run_commands/2,3

54 Chapter 4. Testing Stateful Systems

A property that can be used to test finite state machine specifications is specified in List-
ing 4.19. Due to name conflicts with functions automatically imported from proper_statem,
a fully qualified call is needed in order to use the API functions of proper_fsm.

� �
1 prop_fsm() ->
2 ?FORALL(Cmds, proper_fsm:commands(?MODULE),
3 begin
4 {_History, _State, Result} =
5 proper_fsm:run_commands(?MODULE, Cmds),
6 cleanup(),
7 Result =:= ok
8 end).� �

Listing 4.19: Property for testing finite state machines

Chapter 5

Some PropEr Tutorials

In this chapter we will present two tutorials on the correct use of PropEr for testing
stateful reactive systems. The first example is about testing generic servers (gen_server
behaviour) and process interaction, whereas the second one covers finite state machine
testing (gen_fsm behaviour).

5.1 PropEr statem tutorial

In this tutorial, we will use PropEr to test the interaction of the ping-pong server, described
in Chapter 2, with the player processes. We can assume that we have already successfully
tested the stand-alone behaviour of the server. There are still interesting bugs to discover
when the server starts interacting with the player processes.

5.1.1 The ping-pong players

A ping-pong player is a process spawned and registered as Name that executes the loop
described in Listing 5.1.� �

1 ping_pong_player(Name) ->
2 receive
3 ping_pong ->
4 ping(Name);
5 {tennis, From} ->
6 From ! maybe_later;
7 {football, From} ->
8 From ! no_way
9 end,
10 ping_pong_player(Name).� �

Listing 5.1: Ping-pong player’s loop

When a player is asked by an external client to play ping-pong, she will send a ping
message to the ping-pong master. On the other hand, if asked to play tennis or football,
the player replies with a message expressing her dislike for any sport other than ping-pong.
The API for interacting with a ping-pong player is described in Listing 5.2.

55

56 Chapter 5. Some PropEr Tutorials

� �
1 play_ping_pong(Player) ->
2 Player ! ping_pong,
3 ok.
4
5 play_tennis(Player) ->
6 Player ! {tennis, self()},
7 receive
8 Reply -> Reply
9 end.
10
11 play_football(Player) ->
12 Player ! {football, self()},
13 receive
14 Reply -> Reply
15 end.� �

Listing 5.2: Ping-pong player’s API

5.1.2 It’s ping-pong time!

It’s now time to test that the system behaves as expected when the ping-pong players
interact with the master. To this end, we will specify an abstract state machine mod-
eling the master’s internal state, just as we would do to test the stand-alone behaviour
of the master. We choose to base our state machine specification on the master process
because this is the main component of the system under test. But now, instead of making
ping/1 calls directly to the master, we will instruct the ping-pong players to do so by per-
forming the asynchronous play_ping_pong/1 call. Moreover, we will include synchronous
play_tennis/1 calls to the ping-pong players, to test that such calls do not influence the
players’ interaction with the master. In our case, this is quite obvious. But when testing,
for example, the interaction of processes in a big supervision tree, we cannot be sure about
the possible side-effects of each operation.

On the other hand, it is important to keep the complexity of our model at a reasonable level.
Otherwise, it’s quite probable to make errors in the state machine specification. For each
different feature we would like to test, defining a simple state machine that concentrates
on the operations related to that feature will usually reveal any inconsistencies between
the model and the actual system behaviour. These inconsistencies will be reflected in the
results of the selected API calls.

In Listing 5.3 we specify the model state representation and the callback used to initialize
this state. Then, in Listings 5.4 – 5.7, we define the abstract state machine that will
be used to test the ping-pong system. The callback functions that should be defined are
command/1, next_state/3, precondition/2 and postcondition/3. We should note, at
this point, that we do not need to explicitly define a name() generator. Valid names for
the player processes are generated from the type declaration for name(), as specified in
Listing 5.3.

We can notice that the model state contains a dictionary data structure. There-
fore, when running a command sequence, the History and State fields returned by
proper_statem:run_commands/2 will also contain dictionaries. Upon failure, the dic-
tionaries will be printed out based on their internal representation, and this is something
we would like to avoid. We decide to deal with this issue by including some pretty-printing

5.1 PropEr statem tutorial 57

� �
1 -type name() :: ’bob’ | ’alice’ | ’joe’ | ’mary’.
2
3 -record(state, {players = [] :: [name()],
4 scores = dict:new() :: dict()}).
5
6 initial_state() -> #state{}.� �

Listing 5.3: Model state representation

� �
1 command(#state{players = []}) ->
2 {call,?MASTER,add_player,[name()]};
3 command(S) ->
4 oneof([{call,?MASTER,add_player,[name()]},
5 {call,?MASTER,remove_player,[name(S)]},
6 {call,?MASTER,get_score,[name(S)]},
7 {call,?PLAYER,play_ping_pong,[name(S)]},
8 {call,?PLAYER,play_tennis,[name(S)]}]).
9
10 name(S) -> elements(S#state.players).� �

Listing 5.4: The operations to be tested

� �
1 next_state(S, _V, {call,_,add_player,[Name]}) ->
2 case lists:member(Name, S#state.players) of
3 false ->
4 S#state{players = [Name|S#state.players],
5 scores = dict:store(Name, 0, S#state.scores)};
6 true ->
7 S
8 end;
9 next_state(S, _V, {call,_,remove_player,[Name]}) ->
10 S#state{players = lists:delete(Name, S#state.players),
11 scores = dict:erase(Name, S#state.scores)};
12 next_state(S = #state{scores = Sc}, _V, {call,_,play_ping_pong,[Name]}) ->
13 S#state{scores = dict:update_counter(Name, 1, Sc)};
14 next_state(S, _, _) ->
15 S.� �

Listing 5.5: State transitions

� �
1 precondition(S, {call,_,remove_player,[Name]}) ->
2 lists:member(Name, S#state.players);
3 precondition(S, {call,_,get_score,[Name]}) ->
4 lists:member(Name, S#state.players);
5 precondition(S, {call,_,play_ping_pong,[Name]}) ->
6 lists:member(Name, S#state.players);
7 precondition(S, {call,_,play_tennis,[Name]}) ->
8 lists:member(Name, S#state.players);
9 precondition(_, _) ->
10 true.� �

Listing 5.6: Preconditions

58 Chapter 5. Some PropEr Tutorials

� �
1 postcondition(_S, {call,_,add_player,[_Name]}, Result) ->
2 Result =:= ok;
3 postcondition(_S, {call,_,remove_player,[Name]}, Result) ->
4 Result =:= {removed, Name};
5 postcondition(S, {call,_,get_score,[Name]}, Result) ->
6 Result =:= dict:fetch(Name, S#state.scores);
7 postcondition(_S, {call,_,play_ping_pong ,[_Name]}, Result) ->
8 Result =:= ok;
9 postcondition(_S, {call,_,play_tennis,[_Name]}, Result) ->
10 Result =:= maybe_later.� �

Listing 5.7: Postconditions

functions in the property, so as to output more informative debugging information. The
pretty-printing functions and the property to test the ping-pong system are specified in
Listing 5.8.

� �
1 pretty_history(History) ->
2 [{pretty_state(State),Result} || {State,Result} <- History].
3
4 pretty_state(#state{scores = Scores} = S) ->
5 S#state{scores = dict:to_list(Scores)}.
6
7 prop_ping_pong_works() ->
8 ?FORALL(Cmds, commands(?MODULE),
9 ?TRAPEXIT(
10 begin
11 ?MASTER:start_link(),
12 {History,State,Result} = run_commands(?MODULE, Cmds),
13 ?MASTER:stop(),
14 ?WHENFAIL(
15 io:format(”History: ~w\nState: ~w\nRes: ~w\n”,
16 [pretty_history(History),
17 pretty_state(State), Result]),
18 aggregate(command_names(Cmds), Result =:= ok))
19 end)).� �

Listing 5.8: Property with pretty-printing functions

Having successfully tested the stand-alone behaviour of the master, we expect the property
to pass the tests. However, as we can see in Listing 5.9, the property fails along with error
reports on the server crashing!

This happens because the asynchronous play_ping_pong/1 operation introduces non-
determinism in the order in which messages are received by the server. Here we can see
yet another benefit of property based testing: it helps to increase our understanding about
process interaction in the system under test.

Fixing the postcondition of get_score/1 so as to achieve deterministic results is quite
simple in this case. This is described in Listing 5.10.

5.1 PropEr statem tutorial 59

� �
7> proper:quickcheck(ping_pong_statem:prop_ping_pong_works()).
.............
=ERROR REPORT==== 30-May-2011::02:09:56 ===
<...error description...>
.
=ERROR REPORT==== 30-May-2011::02:09:56 ===
<...error description...>
..........!
Failed: After 25 test(s).
[{set,{var,1},{call,ping_pong,add_player,[alice]}},
{set,{var,2},{call,ping_pong,play_ping_pong,[alice]}},
{set,{var,3},{call,ping_pong,play_tennis,[alice]}},
{set,{var,4},{call,ping_pong,play_tennis,[alice]}},
{set,{var,5},{call,ping_pong,remove_player,[alice]}},
{set,{var,6},{call,ping_pong,add_player,[mary]}},
{set,{var,7},{call,ping_pong,play_ping_pong,[mary]}},
{set,{var,8},{call,ping_pong,get_score,[mary]}},
{set,{var,9},{call,ping_pong,add_player,[john]}},
{set,{var,10},{call,ping_pong,play_tennis,[john]}},
{set,{var,11},{call,ping_pong,add_player,[alice]}},
{set,{var,12},{call,ping_pong,add_player,[bob]}},
{set,{var,13},{call,ping_pong,play_tennis,[john]}}]

History: [{{state,[],[]},ok},{{state,[alice],[{alice,0}]},ok},
{{state,[alice],[{alice,1}]},maybe_later},
{{state,[alice],[{alice,1}]},maybe_later},
{{state,[alice],[{alice,1}]},{removed,alice}},
{{state,[],[]},ok},{{state,[mary],[{mary,0}]},ok},
{{state,[mary],[{mary,1}]},0}]

State: {state,[mary],[{mary,1}]}
Result: {postcondition,false}

Shrinking(8 time(s))
[{set,{var,6},{call,ping_pong,add_player,[mary]}},
{set,{var,7},{call,ping_pong,play_ping_pong,[mary]}},
{set,{var,8},{call,ping_pong,get_score,[mary]}}]

History: [{{state,[],[]},ok},{{state,[mary],[{mary,0}]},ok},
{{state,[mary],[{mary,1}]},0}]

State: {state,[mary],[{mary,1}]}
Result: {postcondition,false}
false� �

Listing 5.9: Testing the property

� �
1 postcondition(S, {call,_,get_score,[Name]}, Result) ->
2 Result =< proplists:get_value(Name, S#state.scores);� �

Listing 5.10: Fixing the postcondition

60 Chapter 5. Some PropEr Tutorials

The error reports, however, are triggered by a not-so-evident bug in the code. They
are occassionaly produced when stopping the server, because of an attempt to get and
subsequently kill the pid associated with a name that is actually not present in the process
registry. Let us re-examine the code that is executed when stopping the server. We present
it in Listing 5.11.

� �
1 terminate(_Reason, Dict) ->
2 Players = dict:fetch_keys(Dict),
3 lists:foreach(fun (Name) -> exit(whereis(Name), kill) end, Players).� �

Listing 5.11: Clean-up code upon termination

The exception raised suggests that there exist some names which are stored in the server’s
internal dictionary, but are not associated with any (process) pid. But where do these
names come from? To get the answer we have to take a look at how ‘ping’ messages are
handled by the server. This is described in Listing 5.12.

� �
1 handle_call({ping, FromName}, _From, Dict) ->
2 {reply, pong, dict:update_counter(FromName, 1, Dict)};� �

Listing 5.12: Handling ping messages

It suggests that incoming ‘ping’ messages associated with names not present in the server’s
dictionary are actually inserted in the dictionary. When we perform an asynchronous
play_ping_pong/1 request to a player, there is a chance that this player might be re-
moved before her ‘ping’ message is received by the master. In this case, when the master
eventually receives the ‘ping’ message, the name of the removed player will be added to
the dictionary, despite not being associated with any process. Having spotted the bug, we
can easily fix it, as described in Listing 5.13.

� �
1 handle_call({ping, FromName}, _From, Dict) ->
2 case dict:is_key(FromName, Dict) of
3 true ->
4 {reply, pong, dict:update_counter(FromName, 1, Dict)};
5 false ->
6 {reply, {removed, FromName}, Dict}
7 end;� �

Listing 5.13: Fixing the bug

And now the property successfully passes the tests, as we can see in Listing 5.14.

5.2 PropEr FSM tutorial 61

� �
11> proper:quickcheck(ping_pong_statem:prop_ping_pong_works()).
<...1000 dots...>
OK: Passed 1000 test(s).

34% {ping_pong,add_player,1}
16% {ping_pong,remove_player ,1}
16% {ping_pong,play_ping_pong ,1}
16% {ping_pong,play_tennis ,1}
16% {ping_pong,get_score,1}
true� �

Listing 5.14: Test case distribution of 1000 successful tests

5.2 PropEr FSM tutorial

In this tutorial, we will use PropEr to test the finite state machine implementation that we
introduced in Chapter 2. The finite state machine describes the daily habbits of a strange
creature that feeds on cheese, lettuce and grapes, but never eats the same kind of food on
two consecutive days.
As a first example, we would like to test that the creature never runs out of food in the
storage. The property for this test is specified in Listing 5.15.� �

1 prop_doesnt_run_out_of_supplies() ->
2 ?FORALL(Cmds, proper_fsm:commands(?MODULE),
3 begin
4 start(cheese_day), %% could also be grapes_day or lettuce_day,
5 %% but the same kind of day should be used
6 %% to initialize the model state
7 {History, State, Result} =
8 proper_fsm:run_commands(?MODULE, Cmds),
9 stop(),
10 ?WHENFAIL(io:format(”History: ~w\nState: ~w\nResult: ~w\n”,
11 [History, State, Result]),
12 Result =:= ok)
13 end).� �

Listing 5.15: Property for the ‘creature’ finite state machine

5.2.1 Defining the PropEr finite state machine

Let us start on a cheese_day with the default portions of each kind of food available in
the storage, since the initial state of our model should coincide with the initial state of the
system under test. This is described in Listing 5.16.
In our specification, we will define a separate callback function for each state in the state
diagram (i.e. cheese_day/1, lettuce_day/1, grapes_day/1). Each of these callbacks
should specify a list of possible transitions from that state, as described in Listing 5.17.
As we mentioned before, the state callbacks take as argument the state data. In our case,
the state data is a record containing the quantity of cheese, lettuce and grapes in the food
storage.

62 Chapter 5. Some PropEr Tutorials

� �
1 -type quantity() :: non_neg_integer().
2
3 -record(storage, {cheese = 5 :: quantity(),
4 lettuce = 5 :: quantity(),
5 grapes = 5 :: quantity()}).
6
7 initial_state() -> cheese_day.
8
9 initial_state_data() -> #storage{}.� �

Listing 5.16: Initializing the model state

� �
1 cheese_day(_S) ->
2 store_transition() ++ eat_transition() ++
3 [{grapes_day, {call,?MODULE,new_day,[grapes]}},
4 {lettuce_day, {call,?MODULE,new_day,[lettuce]}}].
5
6 lettuce_day(_S) ->
7 store_transition() ++ eat_transition() ++
8 [{grapes_day, {call,?MODULE,new_day,[grapes]}},
9 {cheese_day, {call,?MODULE,new_day,[cheese]}}].
10
11 grapes_day(_S) ->
12 store_transition() ++ eat_transition() ++
13 [{lettuce_day, {call,?MODULE,new_day,[lettuce]}},
14 {cheese_day, {call,?MODULE,new_day,[cheese]}}].� �

Listing 5.17: Callbacks for the states of the finite state machine

5.2 PropEr FSM tutorial 63

A store_transition is triggered every time the creature buys some food, whereas an
eat_transition is triggered every time it is hungry. These are depicted in Listing 5.18.
Both of these transitions do not change the current state of the FSM and this is specified by
having history as the target state. In order to specify a store_transition, we also need
generators for food() and store_quantity(). The food() generator is automatically
derived from the corresponding type declaration.

� �
1 -type food() :: ’cheese’ | ’lettuce’ | ’grapes’.
2
3 store_transition() ->
4 [{history, {call,?MODULE,buy,[food(), store_quantity()]}}].
5
6 eat_transition() ->
7 [{history, {call,?MODULE,hungry,[]}}].
8
9 store_quantity() ->
10 range(1, 4).� �

Listing 5.18: Store and eat transitions

Initially, we do not impose any preconditions. However, postconditions are needed, as
specified in Listing 5.19.

� �
1 precondition(_From, _Target, _StateData, {call,_,_,_}) ->
2 true.
3
4 postcondition(cheese_day, _, S, {call,_,hungry,[]}, Result) ->
5 Cheese = S#storage.cheese,
6 Cheese > 0 andalso Result =:= {cheese_left, Cheese};
7 postcondition(lettuce_day, _, S, {call,_,hungry,[]}, Result) ->
8 Lettuce = S#storage.lettuce,
9 Lettuce > 0 andalso Result =:= {lettuce_left, Lettuce};
10 postcondition(grapes_day, _, S, {call,_,hungry,[]}, Result) ->
11 Grapes = S#storage.grapes,
12 Grapes > 0 andalso Result =:= {grapes_left, Grapes};
13 postcondition(_From, _Target, _StateData, {call,_,_,_}, Result) ->
14 Result =:= ok.� �

Listing 5.19: Preconditions and postconditions

The set of callback functions corresponding to the states of the FSM update part of the
model state, since they specify the target state of a transition. In order to update the
state data, we have to define a separate callback function, as described in Listing 5.20.

64 Chapter 5. Some PropEr Tutorials

� �
1 next_state_data(_, _, S, _, {call,_,buy,[Food, Quantity]}) ->
2 case Food of
3 cheese ->
4 S#state{cheese = S#state.cheese + Quantity};
5 lettuce ->
6 S#state{lettuce = S#state.lettuce + Quantity};
7 grapes ->
8 S#state{grapes = S#state.grapes + Quantity}
9 end;
10 next_state_data(Today, _, S, _, {call,_,hungry,[]}) ->
11 case Today of
12 cheese_day ->
13 S#state{cheese = S#state.cheese - 1};
14 lettuce_day ->
15 S#state{lettuce = S#state.lettuce - 1};
16 grapes_day ->
17 S#state{grapes = S#state.grapes - 1}
18 end;
19 next_state_data(_From, _Target, StateData, _Result, {call,_,_,_}) ->
20 StateData.� �

Listing 5.20: Updating the state data

5.2.2 PropEr in action

Let us run the first tests on our property. It states that the creature never runs out of
food in the storage.

� �
5> proper:quickcheck(food_fsm:prop_doesnt_run_out_of_supplies()).

Error: The transition from ”cheese_day” state triggered by
{food_fsm,new_day,1} call leads to multiple target states.
Use the precondition/5 callback to specify which target state should be chosen.
** exception error: too_many_targets� �

Listing 5.21: First attempt to test the property

Well, we didn’t see that coming! It seems that some part of our specification is not proper
enough.

PropEr allows more than one transitions to be triggered by the same symbolic call and
lead to different target states. As in the case in Listing 5.22.

� �
1 cheese_day(_S) ->
2 [{grapes_day, {call,?MODULE,new_day,[grapes]}},
3 {lettuce_day, {call,?MODULE,new_day,[lettuce]}}].� �

Listing 5.22: Selected transitions from a cheese_day

However, the precondition callback may return true for at most one of these target states.
Otherwise, PropEr will not be able to detect which transition was chosen and an exception

5.2 PropEr FSM tutorial 65

will be raised. In our case, we have to specify the preconditions described in Listing 5.23
to associate each possible argument of new_day/1 with the correct target state.

� �
1 precondition(Day, Day, _, {call,_,new_day,_}) ->
2 false;
3 precondition(_, grapes_day, _, {call,_,new_day,[grapes]}) ->
4 true;
5 precondition(_, cheese_day, _, {call,_,new_day,[cheese]}) ->
6 true;
7 precondition(_, lettuce_day, _, {call,_,new_day,[lettuce]}) ->
8 true;
9 precondition(_, _, _, {call,_,new_day,_}) ->
10 false;
11 precondition(_, _, _, {call,_,_,_}) ->
12 true.� �

Listing 5.23: Preconditions

If we run the test again, finally we get some results. It seems that there is always some
food in the storage. But... wait a minute! We cannot be sure of what was tested unless
we have a look at the test case distribution. Listing 5.24 describes how to instrument the
property so as to collect statistics about how often each transition is tested. The resulting
test case distribution is depicted in Listing 5.25.

� �
1 prop_doesnt_run_out_of_supplies() ->
2 ?FORALL(Cmds, proper_fsm:commands(?MODULE),
3 begin
4 start(cheese_day), %% could also be grapes_day or lettuce_day,
5 %% but the same kind of day should be used
6 %% to initialize the model state
7 {History, State, Result} =
8 proper_fsm:run_commands(?MODULE, Cmds),
9 stop(),
10 ?WHENFAIL(io:format(”History: ~w\nState: ~w\nResult: ~w\n”,
11 [History, State, Result]),
12 aggregate(zip(proper_fsm:state_names(History),
13 command_names(Cmds)),
14 Result =:= ok))
15 end).� �

Listing 5.24: Collecting statistics on test case distribution

It seems that the creature doesn’t get hungry very often in our tests. Thus, our previ-
ous conclusion about everlasting food supplies cannot be really trusted. We can instruct
PropEr to choose hungry/0 calls more often by assigning weights to transitions, as de-
scribed in Listing 5.26.

The result of running the tests with weighted transitions are presented in Listing 5.27.

As we can see now, in case of non-stop eating the creature eventually runs out of food.
What is more, the content of the State variable reveals that the quantity of available food
starts getting negative values. We will correct the code to prevent this from happening,
as described in Listing 5.28.

66 Chapter 5. Some PropEr Tutorials

� �
12> proper:quickcheck(food_fsm:prop_doesnt_run_out_of_supplies()).
...
...........................
OK: Passed 100 test(s).

20% {cheese_day,{food_fsm,new_day,1}}
14% {grapes_day,{food_fsm,new_day,1}}
14% {lettuce_day,{food_fsm,new_day,1}}
9% {cheese_day,{food_fsm,hungry,0}}
9% {cheese_day,{food_fsm,buy,2}}
8% {lettuce_day,{food_fsm,buy,2}}
8% {grapes_day,{food_fsm,buy,2}}
7% {grapes_day,{food_fsm,hungry,0}}
7% {lettuce_day,{food_fsm,hungry,0}}

true� �
Listing 5.25: How often each transition is tested?

� �
1 weight(_Today, _Tomorrow, {call,_,new_day,_}) -> 1;
2 weight(_Today, _Today, {call,_,hungry,_}) -> 3;
3 weight(_Today, _Today, {call,_,buy,_}) -> 2.� �

Listing 5.26: Assigning weights to transitions

� �
15> proper:quickcheck(food_fsm:prop_doesnt_run_out_of_supplies()).
..........................!
Failed: After 27 test(s).
<... 13 commands ...>
History: <... long execution history ...>
State: {grapes_day,{storage,4,8,-1}}
Result: {postcondition,false}

Shrinking(5 time(s))
[{set,{var,4},{call,food_fsm,hungry,[]}},
{set,{var,8},{call,food_fsm,hungry,[]}},
{set,{var,9},{call,food_fsm,hungry,[]}},
{set,{var,11},{call,food_fsm,hungry,[]}},
{set,{var,12},{call,food_fsm,hungry,[]}},
{set,{var,13},{call,food_fsm,hungry,[]}}]

History: [{{cheese_day,{storage,5,5,5}},{cheese_left,5}},
{{cheese_day,{storage,4,5,5}},{cheese_left,4}},
{{cheese_day,{storage,3,5,5}},{cheese_left,3}},
{{cheese_day,{storage,2,5,5}},{cheese_left,2}},
{{cheese_day,{storage,1,5,5}},{cheese_left,1}},
{{cheese_day,{storage,0,5,5}},{cheese_left ,0}}]

State: {cheese_day,{storage,-1,5,5}}
Result: {postcondition,false}
false� �

Listing 5.27: Running the test with weighted transitions

5.2 PropEr FSM tutorial 67

� �
1 cheese_day(eat, Caller, #storage{cheese = Cheese} = S) ->
2 gen_fsm:reply(Caller, {cheese_left, Cheese}),
3 case Cheese > 0 of
4 true ->
5 {next_state, cheese_day, S#storage{cheese = Cheese - 1}};
6 false ->
7 {next_state, cheese_day, S}
8 end.
9
10 lettuce_day(eat, Caller, #storage{lettuce = Lettuce} = S) ->
11 gen_fsm:reply(Caller, {lettuce_left, Lettuce}),
12 case Lettuce > 0 of
13 true ->
14 {next_state, lettuce_day, S#storage{lettuce = Lettuce - 1}};
15 false ->
16 {next_state, lettuce_day, S}
17 end.
18
19 grapes_day(eat, Caller, #storage{grapes = Grapes} = S) ->
20 gen_fsm:reply(Caller, {grapes_left, Grapes}),
21 case Grapes > 0 of
22 true ->
23 {next_state, grapes_day, S#storage{grapes = Grapes - 1}};
24 false ->
25 {next_state, grapes_day, S}
26 end.� �

Listing 5.28: Correcting our code

Let us now assume that the creature is wise enough to take care of buying food before it
gets hungry. This can be modeled by adding the precondition specified in Listing 5.29.
Moreover, we can instruct PropEr to choose an ‘eat_transition’ only when there is food
available, as described in Listing 5.30.

� �
1 precondition(Today, _, S, {call,_,hungry,[]}) ->
2 case Today of
3 cheese_day ->
4 S#storage.cheese > 0;
5 lettuce_day ->
6 S#storage.lettuce > 0;
7 grapes_day ->
8 S#storage.grapes > 0
9 end;� �

Listing 5.29: Additional precondition

68 Chapter 5. Some PropEr Tutorials

� �
1 cheese_day(S) ->
2 store_transition() ++ eat_transition(S#storage.cheese) ++
3 [{grapes_day, {call,?MODULE,new_day,[grapes]}},
4 {lettuce_day, {call,?MODULE,new_day,[lettuce]}}].
5
6 lettuce_day(S) ->
7 store_transition() ++ eat_transition(S#storage.lettuce) ++
8 [{grapes_day, {call,?MODULE,new_day,[grapes]}},
9 {cheese_day, {call,?MODULE,new_day,[cheese]}}].
10
11 grapes_day(S) ->
12 store_transition() ++ eat_transition(S#storage.lettuce) ++
13 [{lettuce_day, {call,?MODULE,new_day,[lettuce]}},
14 {cheese_day, {call,?MODULE,new_day,[cheese]}}].
15
16 eat_transition(Food_left) ->
17 [{history, {call,?MODULE,hungry,[]}} || Food_left > 0].� �

Listing 5.30: Introducing conditional transitions

The property now successfully passes 1000 tests, as we can see in Listing 5.31.

� �
18> proper:quickcheck(food_fsm:prop_never_run_out_of_supplies(), 1000).
<...1000 dots...>
OK: Passed 1000 test(s).

19% {cheese_day,{food_fsm,hungry,0}}
13% {cheese_day,{food_fsm,buy,2}}
13% {cheese_day,{food_fsm,new_day,1}}
11% {lettuce_day,{food_fsm,hungry,0}}
11% {grapes_day,{food_fsm,hungry,0}}
8% {lettuce_day,{food_fsm,new_day,1}}
8% {grapes_day,{food_fsm,new_day,1}}
7% {lettuce_day,{food_fsm,buy,2}}
7% {grapes_day,{food_fsm,buy,2}}

true� �
Listing 5.31: Test case distribution of 1000 successful tests

Chapter 6

Conclusion

6.1 Concluding remarks

In this thesis we have presented our implementation of two library modules, proper_statem
and proper_fsm, written on top of the core PropEr system. Our contribution lies in pro-
viding open-source support for random model-based testing of stateful reactive Erlang
systems. We have also provided detailed tutorials on the use of the new ‘stateful testing’
subsystem of PropEr. Although it is quite early to draw conclusions about the effective-
ness and robustness of our implementation, the first signs seem quite promising. PropEr
(including our extensions) was properly announced1 in Erlang Factory London 2011. In
another talk given at that same conference, PropEr was included among the ‘cool tools’
for testing Erlang programs, especially for detecting failing edge-case scenarios.2 PropEr
is currently used as a testing tool in open-source projects, including the AMQP messaging
protocol implementation RabbitMQ and Mochiweb, an Erlang library for building HTTP
servers.

6.2 Future work

In the future, we aim to provide a tighter integration of PropEr with other testing tools
for Erlang. One of these tools is Concuerror [10], a testing tool for concurrent Erlang
programs. Concuerror relies on systematically exploring process interleaving to reveal
concurrency-related errors. To be able to force desired interleaving sequences, Concuerror
comes with a custom scheduler that takes care of controlling the order in which the com-
mands of the various processes are executed. We believe that a proper integration of our
tool with Concuerror would allow greater control over scheduling of parallel commands.
Therefore, parallel statem testing with PropEr could be effectively performed in a fully
automated way.

Providing control over scheduling of parallel commands seems a prerequisite, so that our
tool can be used in practice to detect race conditions. Aside from this more pressing
concern, we would like to experiment with the number of concurrent processes used for

1http://proper.softlab.ntua.gr/talks/
2http://etrepum.github.com/erl_testing_2011/

69

http://proper.softlab.ntua.gr/talks/
http://etrepum.github.com/erl_testing_2011/

70 Chapter 6. Conclusion

parallel testing or provide additional ways of generating parallel test cases. Since con-
straints can be easily moved from preconditions to postconditions when switching from
positive to negative testing, in some cases it might be preferable to eliminate preconditions
from state machine specifications used for parallel testing. Such an approach is interest-
ing, as it would also eliminate the need to produce all possible command interleavings at
generation time.

Bibliography

[1] J. Armstrong. Making reliable distributed systems in the presence of software errors.
PhD thesis, Department of Microelectronics and Information Technology, The Royal
Institute of Technology Stockholm, December 2003.

[2] J. Armstrong. Programming Erlang: Software for a Concurrent World. The Pragmatic
Bookshelf, 2007.

[3] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing Telecoms Software with
Quviq QuickCheck. In Proceedings of the 2006 ACM SIGPLAN Workshop on Erlang,
pages 2–10. ACM, 2006.

[4] K. Beck. Test Driven Development: By Example. Addison-Wesley Professional, 2002.

[5] J. Boberg. Early Fault Detection with Model-Based Testing. In Proceedings of the
7th ACM SIGPLAN Workshop on Erlang, pages 9–20. ACM, 2008.

[6] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly Media, 2009.

[7] K. Claessen and J. Hughes. QuickCheck: a Lightweight Tool for Random Testing of
Haskell Programs. In Proceedings of the 5th ACM SIGPLAN International Conference
on Functional Programming, pages 268–279. ACM, 2000.

[8] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and
B. M. Horowitz. Model-Based Testing in Practice. In Proceedings of the 1999 Inter-
national Conference on Software Engineering (ICSE), page 285. ACM, May 1999.

[9] I. K. El-Far and J. A. Whittaker. Model-based Software Testing. Encyclopedia on
Software Engineering, 2001.

[10] A. Gotovos, M. Christakis, and K. Sagonas. Test-Driven Development of Concurrent
Programs using Concuerror, June 2011. To appear in the 2011 ACM SIGPLAN
Workshop on Erlang.

[11] J. Hughes. QuickCheck Testing for Fun and Profit. In Proceedings of the 9th Interna-
tional Symposium on Practical Aspects of Declarative Languages, pages 1–32. PADL,
2007.

[12] K. Klaessen, M. Palka, N. Smallbone, J. Huges, H. Svensson, T. Arts, and U. Wiger.
Finding race conditions in Erlang with QuickCheck and Pulse. In Proceedings of the
14th ACM SIGPLAN International Conference on Functional Programming, pages
149–160. ACM, 2009.

71

72 Bibliography

[13] M. Papadakis. Automatic random testing of function properties from specifications.
Master’s thesis, Department of Computer Science, School of Electrical and Computer
Engineering, National Technical University of Athens, October 2010.

[14] M. Papadakis, E. Arvaniti, and K. Sagonas. PropEr: an open-source, Quickcheck-
inspired property based tool for Erlang. http://proper.softlab.ntua.gr.

[15] M. Papadakis and K. Sagonas. A PropEr Integration of Types and Function Specifica-
tions with Property-Based Testing, June 2011. To appear in the 2011 ACM SIGPLAN
Workshop on Erlang.

[16] K. K. Thorup. Triq: Trifork QuickCheck. http://krestenkrab.github.com/triq/.

[17] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-Based Testing.
Working paper, April 2006.

[18] U. Wiger. Erlang Programming for Multi-core, March 2009. Slides presented in
QCON London 2009 conference.

http://proper.softlab.ntua.gr
http://krestenkrab.github.com/triq/

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	List of Listings
	Motivation
	A Short Introduction to Erlang and OTP
	The Erlang Programming Language
	OTP Design Principles
	Behaviours
	A generic server behaviour
	A generic finite state machine behaviour

	Property-Based Testing, Model-Based Testing and PropEr
	An overview of property-based testing with PropEr
	Properties
	Types and generators
	Symbolic representation

	Using PropEr to test stateful systems: the idea
	Model-Based Testing
	Our approach to testing stateful systems

	Testing Stateful Systems
	PropEr Statem
	General concepts
	Defining a callback module
	Implementation details
	Parallel statem testing

	PropEr FSM
	Changes in the callback module
	Implementation details
	API description and implementation

	Some PropEr Tutorials
	PropEr statem tutorial
	The ping-pong players
	It's ping-pong time!

	PropEr FSM tutorial
	Defining the PropEr finite state machine
	PropEr in action

	Conclusion
	Concluding remarks
	Future work

	Bibliography

